
Engineering & Technology Scientific Journal
Research Article - e024004

Vol. 1, N°. 1, 1-8, 2024
ISSN (Online): 2764 - 5746

DOI:10.55977/etsjournal.v01i01.e024004

Crossflow Microfiltration of Aqueous Suspensions
with Guar and Xanthan Gums: Identification of

Solutions Using Artificial Neural Networks

Matheus Nonis Passerini1 , Érica Regina Filletti1*

Abstract
Artificial Neural Networks (ANNs) are mathematical models used in the computational area that act in an
analogous way to the central nervous system of living beings, which possess the ability of acquiring knowledge in
a technique called machine learning, allowing them to recognize patterns and be used in numerous applications.
Therefore, the objective was to develop Artificial Neural Networks capable of identifying aqueous suspensions
with Guar and Xanthan gums (widely used in the food industry) during the crossflow microfiltration process.The
ANNs were trained in the supervised learning algorithms trainscg, trainlm and traingd, all in the 70/15/15
model, for a range of five to fifteen neurons in the hidden layer, whose datasets were found in the literature,
referring to temperature, flow velocity, pressure, transmembrane flow rate, time and membrane pore size. The
software used to implement the ANNs was MATLAB and the evaluation criteria consisted of the analysis of
the parameters confusion matrix, error histogram, performance and ROC curve. In summary, ten ANNs had
satisfactory performances, presenting confusion matrices with accuracies above 98.8%, error histogram graphs
being Gaussian centered at 0, decaying performance curves with stopping criterion equal to 6 errors in the
validation set and ROC graphs similar to a square with vertices at (0,0), (1,0), (0,1) and (1,1), results considered
satisfactory in the literature.
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1. Introduction

An Artificial Neural Network (ANN) is a mathematical com-
puter model that simulates the central nervous system of intel-
ligent living beings, such as Homo sapiens. ANNs are capable
of unravelling physical and mathematical patterns through a
technique called Machine Learning, where previously known
data is provided to the computer and it will come up with a
model that best adjusts to the problem based on trial and error
[Filletti, 2007, Filletti and Seleghim Jr, 2010].

Artificial Neural Networks currently have numerous appli-
cations, such as optimizing industrial processes [Gul et al., 2020],
predicting events [Chen et al., 2020], voice commands and
personalizing advertisements [Viktoratos and Tsadiras, 2021,

Wang et al., 2022, Mykhailichenko et al., 2022].
On the other side, crossflow filtration is a unitary operation

widely used in the industry which aims to separate phases of
a solution based on the principle of the pressure difference
caused by the perpendicular movement between the permeate
(substances passing through the membrane) and the retained
(substances kept under the membrane) [Belfort et al., 1994,
Chew et al., 2020].

Crossflow filtration can be divided into subclasses accord-
ing to the pore size of the membrane used for separation,
being crossflow microfiltration one of them. The prefix ”mi-
cro” refers to the set of pores between 0.1 and 0.2 µm in size
[Barros, 2018].

This unit operation is widely used in the food industry
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ing unwanted substances) [Proni et al., 2020], sewage treat-
ment (removing impurities from water to make it potable)
[Hube et al., 2021], cleaning and cosmetics (optimizing solu-
tions) [Kürzl et al., 2022], among others.

The use of Artificial Neural Networks in the field of cross-
flow filtration has already shown positive results in the liter-
ature, as pointed out by [Proni et al., 2020, Jokić et al., 2020,
Sekulić et al., 2017], who developed ANNs capable of esti-
mating the permeate flow of an açaı́-based drink, helping
to separate the microbial biomass cultivated from Bacilus
velezensis bacteria and predicting the performance of the mi-
crofiltration process for heavy metal ions, respectively.

Furthermore, guar and xanthan gums are polysaccharides
that come from the endosperm of the seed of the plant Cyamop-
sis tetragonoloba and from the colony of bacteria of the
genus Xanthomonas, respectively [Borges and Tondo, 2008,
Castañeda Ovando et al., 2020]. Both have a range of appli-
cations, especially in the food industry, where they are used
as thickeners, emulsifiers, and stabilizers in the preparation
of various types of aliments, such as tomato and salad sauces,
gluten-free foods, ice cream, fruit juices, as well as personal
hygiene products.

Based on that, the objective of this work was to develop
Artificial Neural Networks capable of identifying aqueous
suspensions containing guar and xanthan gums during the
crossflow microfiltration process. The purpose is to create
an alternative tool that can help both in controlling an impor-
tant chemical process in the industry and in identifying the
proficiency of industrial batches.

2. Experimental

2.1 Datasets
The input data from the datasets consists of values for tem-
perature (T in ◦C), pressure (P in kPa), flow velocity (v in
m .s−1), time (t in min), and membrane pore size. These input
variables result in a respective transmembrane flow rate (TFR
in h−1 .m−2) [Queiroz, 2004]. Furthermore, each set of data
is accompanied by its respective class (output data) according
to the type of aqueous suspension it references: (1 0) for guar
and (0 1) for xanthan. An example of a data set can be seen in
Table 1.

2.2 Artificial Neural Networks
The Artificial Neural Networks were implemented using MAT-
LAB software with the help of the nnstart tool. The program-
ming code for the ANN was obtained using this tool, where
the number of neurons in the hidden layer and the supervised
learning algorithm were changed so that various different
combinations could be tested to solve the problem.

The ANNs were separated into two large groups according
to the size of the membrane pores in the datasets:

• Group 1: Contains the data for the membrane pore size
of 0.4 µm. The input data matrix is 5 × 310 and the

Table 1. Some input datasets with their respective class

Temp. Pres. Flow Time Memb. Transmemb. Class
Velocity Pore size Flow rate

(°C) (kPa) (m/s) (min) (µm) (1/h.m)
25 300 3.7 15 0.2 6.63 1 0
25 300 3.7 25 0.2 5.43 1 0
25 300 3.7 15 0.2 35.22 0 1
25 300 3.7 21 0.2 24.56 0 1
40 300 3.7 5 0.2 96.14 1 0
40 300 3.7 33 0.2 16.72 0 1
25 400 2.6 10 0.4 12.18 1 0
25 400 2.6 30 0.4 15.47 0 1
25 500 2.6 20 0.4 4.41 1 0
25 500 2.6 25 0.4 20.74 0 1
40 300 3.7 10 0.3 8.44 1 0
40 300 3.7 15 0.3 4.19 1 0
40 300 3.7 10 0.3 34.61 0 1
40 300 3.7 15 0.3 24.95 0 1
25 400 4.7 20 0.4 5.93 1 0
25 400 4.7 30 0.4 3.80 1 0
25 500 4.7 40 0.4 13.20 0 1
25 400 5.7 5 0.4 106.10 0 1
25 400 5.7 20 0.4 28.57 0 1
25 500 5.7 30 0.4 4.56 1 0

output matrix is 2 × 310.

• Group 2: Contains data relating to membrane pore sizes
of 0.2 and 0.3µm. The input data matrix is 6 × 85 and
the output matrix is 2 × 85.

In group 2, therefore, the pore size entered as a variable for the
ANN processing, while in group 1, the value of 0.4 µm was
kept fixed. This choice was made since the type of membrane
found in the literature in these two cases is different: in group
1, the membrane is of the single-channel type, as for in group
2, multichannel [Queiroz, 2004]. This difference directly in-
terferes on the others output data, affecting the accuracy of
the ANN in a hypothetical junction.

2.3 Training Algorithms
As for the supervised training algorithm used to create the
ANN, trainscg, traingd and trainlm were tested, each for
a range of 5 to 15 neurons in the hidden layer and with a
70/15/15 split of the database (70% training, 15% validation
and 15% testing). The traingd algorithm did not obtain any
satisfactory results, so its use was discarded for this article.

The Scaled Conjugate Gradient Backpropagation (SCG)
algorithm is a supervised learning algorithm that adjusts the
weights of ANN from the steepest descent of the error function
E, which depends on all weights of ANN, using a direction
that produces convergence generally faster than the steepest
descent direction, maintaining the minimum values achieved
in all previous stages. This direction is called conjugate di-
rection [Barros, 2018]. However, this does not necessarily
produce the fastest convergence.
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mated by the expansion of the second-order Taylor series, as
shown in Equation 1 [Mø ller, 1993]:

Eqw(y) = E(w)+E ′(w)T y+ 1
2 yT E ′′(w) Eq.1

where w represents the ANN weight vector and y represents a
neighborhood of w. Besides that, to determine the minimum
of Eqw(y), it is necessary to find the critical points of the
function, given by Equation 2:

E ′
qw(y) = 0 Eq.2

The biggest advantage of using SCG is the speed at which the
training is completed due to the step size scaling mechanism,
avoiding long line searches per learning iteration [Mø ller, 1993].

The Levenberg-Marquardt algorithm is a combination of
two other error backpropagation methods: the Descending
Gradient method and the Gauss-Newton method. It is often
used to solve non-linear least squares problems
[Custódio et al., 2019].

As with the Descending Gradient method, the Levenberg-
Marquardt algorithm is iterative; however, it has the advantage
of being able to choose the best result among the methods
that make it up. According to [Custódio et al., 2019], the
Levenberg-Marquardt algorithm tends to be very fast for train-
ing Artificial Neural Networks but requires a large amount of
memory.

Let di(x) be the desired response from neuron i and yi be
the obtained response from the ANN. Then, the error ei is
given by Equation 3:

ei = yi −di Eq.3.

where i in C, and C is the set of all neurons in the ANN.
Equation 4 shows how the Gauss-Newton method works
[Proni et al., 2020]:

∆xk = [JT J]−1JT e Eq.4

where the vector x = (x1, . . . ,xn) represents the weights of
the ANN, e = (ei, . . . ,en), with ei given by Equation 3, and J
is the Jacobian matrix given by the derivative of the error with
respect to each synaptic weight xi. The Levenberg-Marquardt
modification is shown in Equation 5:

∆xk = [JT J+µI]−1JT e Eq.5

where I is the identity matrix and µ > 0 is called the Levenberg-
Marquardt parameter.

The effect of the additional matrix µI is to add µ to each
eigenvalue of JT J. Since the matrix JT J is positive semi-
definite (therefore, the minimum possible eigenvalue is zero),
any small but numerically significant positive value of µ will
be sufficient to restore the augmented matrix and produce a

downward search direction [Proni et al., 2020].

2.4 Evaluation criteria
The evaluation criteria consisted on the following parameters
considered to be by the literature [Filletti, 2007]:

• Confusion matrix accuracy above 98

• Histogram of the error: a graphical model of the perti-
nence by the error being a Gaussian curve centered on
zero;

• Performance: decaying cross entropy curves per epoch
with stopping criterion equal to 6 errors in the validation
set (empirically verified as the best stopping criterion);

• ROC graph: graph of percentage of hits per percentage
of errors being close to a square with vertices at (0,0),
(0,1), (1,1) and (1,0).

The ANNs that fit these criteria were chosen for discussion in
this article and will be presented in the next section.

3. Results
3.1 Group 1 Trainscg
The Artificial Neural Networks that performed satisfactorily
with the trainscg training algorithm in group 1 (0.4 µm) were
the ANNs whose hidden layer contained 6, 7, 8 and 12 neu-
rons in the hidden layer. All of them achieved accuracy above
99% and the errors were mostly concentrated in the training
datasets. It should also be noted that the 12-neuron ANN
obtained 100% accuracy in all datasets, as shown in confu-
sion matrix (Figure 1a), making it the ANN whose training
algorithm is the trainscg of group 1 with the highest accuracy.
Furthermore, Figure 1b shows the ROC graphic for the same
ANN. Since the ANN was 100% in its predictions, the shape
of the ROC graphic was perfectly a square with vertices at
coordinates (0,0), (0,1), (1,1) and (1,0), which shows that the
ANN did not present any false positives.

As for the histogram of the error of each of these ANNs,
they all have the same format, a graph of error per frequency
characterized by being a Gaussian curve centered on 0. The
histogram of the trainscg ANN of group 1 with 12 neurons in
the hidden layer shows the smallest errors between the ANN
responses and the real values of guar and xanthan (Figure 2).

In addition, it should be noted that almost all of the Ar-
tificial Neural Networks tested in group 1, whose training
algorithm was trainscg, obtained accuracy above 95%, with
the exception of the 5-neuron ANN, whose accuracy was 90%.

3.2 Group 1 trainlm
The Artificial Neural Networks (ANNs) that performed satis-
factorily with the trainlm training algorithm in group 1 (0.4
µL) were those with 5, 6, 9, and 10 neurons in the hidden
layer, all with 100% accuracy in the confusion matrix, with
Figure 3a showing the 10-neuron ANN. In addition, due to the
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Figure 1. Group 1 trainscg ANN with 12 neurons in the
hidden layer confusion matrix (a), and ROC graphic (b).

Figure 2. Group 1 trainscg ANN with 12 neurons in the
hidden layer error histogram.

100% accuracy in the ANN predictions, the ROC graphic was
exactly the same of Group 1 trainscg ANN with 12 neurons
in the hidden layer (Figure 2b), for the same reason.

As with the group 1 trainscg, all the histograms have
the same shape, a graph of error per instance characterized
by being a Gaussian curve centred on 0. The histogram of
the error of the 10-neuron group 1 trainlm ANNs shows the
smallest errors between the ANN responses and the actual
guar and xanthan values (Figure 3).

Figure 3. Group 1 trainlm ANN with 10 neurons in the
hidden layer confusion matrix (a), and error histogram (b).

It should be noted that most of the errors of the 10-neuron
ANN were in the order of 10−5, characterizing it as the Artifi-
cial Neural Network with the best possible performance of all
the groups. The performance graph (mean square error versus
epoch) illustrates this in Figure 4:

3.3 Group 2 trainscg
In group 2, the trainscg training algorithm did not show satis-
factory results. The best performance ANN was the one with
11 neurons in the hidden layer.
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Figure 4. Group 1 trainlm ANN with 10 neurons in the
hidden layer performance graphic.

The group 2 trainscg ANN with 11 neurons in the hidden
layer obtained 85.9% accuracy in the confusion matrix (Figure
5a) and generated an irregular error histogram graph (Figure
5b), whose errors are concentrated at 0.30, which means that
the model generated by the training solved most of the results
with a difference of 30% to the original datasets.

It can be seen in Figure 5a, in the Total Confusion Matrix,
that the biggest error in the model generated was in the fourth
block, id est, the ANN predicted xanthan (2), but the result
was guar (1). Table 2 shows all the output data from the group
2 ANN whose training algorithm was trainscg, with (1 0)
guar and (0 1) xanthan, whose ANN errors are highlighted
in red.

Moreover, Figure 6 shows the ROC graphic for the Group
2 trainscg ANN with 11 neurons in the hidden layer. It can be
seen that the graphic is different to the others, due to the 85%
accuracy of this ANN. The graphic shows that, for the test set,
the ANN did not present any false positive, but in the training
set and validation set, the ANN committed some errors in its
predictions.

It should also be noted that the average accuracy of the
group 2 trainscg ANNs was 75%. This fact can be explained
by one main reason: a huge difference between the size of
the data set of group 1 and group 2 - while the first has 310
datasets, the second has only 85; - due to the poor result
obtained in group 2, this difference in size can be seen as a
”barrier” in terms of the number of the datasets for this prob-
lem in question, as this directly interferes with the accuracy of
the ANN classification. (the more data available for the ANN
to carry out its training, the better its performance).

3.4 Group 2 trainlm
The Artificial Neural Networks that performed satisfactorily
with the trainlm training algorithm in group 2 (0.2 and 0.3 µm)
were the ANNs whose hidden layer contained 7 and 9 neurons.
The 7-neuron ANN in this subgroup obtained 100% accuracy

Figure 5. Group 2 trainscg ANN with 11 neurons in the
hidden layer confusion matrix (a), and error histogram (b).

Figure 6. Group 2 trainscg ANN with 11 neurons in the
hidden layer ROC graphic.
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Figure 7b shows the error histogram of the 7-neuron ANN.

The ANN reached estimated errors of 35%, despite its high
precision. A plausible explanation for this high error in the
histogram, which is much higher than the errors of group 1,
whose training algorithm was also trainlm, is the discrepant
difference in the number of datasets, as also happened with
the trainscg algorithm.

Figure 7. Group 2 trainlm ANN with 7 neurons in the hidden
layer confusion matrix (a), and error histogram (b).

Furthermore, the average for this subgroup was around
90% accuracy in the confusion matrix, which possibly indi-
cates that if there were more datasets available in the literature,
the precision would be higher and, therefore, the algorithm
proved to be functional in this case as well.

Table 2. Group 2 trainscg ANN with 11 neurons in the
hidden layer output data.

Sample ANN Class Obtained Expected
Response by ANN Class

1 0.7757 0.2243 1 0 0 0
2 0.5875 0.4125 1 0 0 0
3 0.5279 0.4721 1 0 0 0
4 0.5503 0.4497 1 0 0 0
5 0.5910 0.4090 1 0 0 0
6 0.6169 0.3831 1 0 0 0
7 0.6406 0.3594 1 0 0 0
8 0.8727 0.1273 1 0 0 0
9 0.8584 0.1416 1 0 0 0
10 0.7532 0.2468 1 0 0 0
11 0.6145 0.3855 1 0 0 0
12 0.3962 0.6038 0 1 0 0
13 0.4583 0.5417 0 1 0 0
14 0.6239 0.3761 1 0 0 0
15 0.7467 0.2533 1 0 0 0
16 0.8508 0.1492 1 0 0 0
17 0.9072 0.0928 1 0 0 0
18 0.9409 0.0591 1 0 0 0
19 0.7315 0.2685 1 0 0 1
20 0.5455 0.4545 1 0 0 1
21 0.4999 0.5001 0 1 0 1
22 0.5201 0.4799 1 0 0 1
23 0.5488 0.4512 1 0 0 1
24 0.5789 0.4211 1 0 0 1
25 0.0700 0.9300 0 1 0 1
26 0.3508 0.6492 0 1 0 1
27 0.4046 0.5954 0 1 0 1
28 0.3586 0.6414 0 1 0 1
29 0.3482 0.6518 0 1 0 1
30 0.2216 0.7784 0 1 0 1
31 0.2384 0.7616 0 1 0 1
32 0.2712 0.7288 0 1 0 1
33 0.3321 0.6679 0 1 0 1
34 0.4187 0.5813 0 1 0 1
35 0.5130 0.4870 1 0 0 1
36 0.6115 0.3885 1 0 0 1
37 0.6853 0.3147 1 0 0 1
38 0.7583 0.2417 1 0 0 1
39 0.7494 0.2506 1 0 0 1
40 0.7360 0.2640 1 0 0 1
41 0.7027 0.2973 1 0 0 1
42 0.6192 0.3808 1 0 0 1
43 0.6237 0.3763 1 0 0 1
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Sample ANN Class Obtained Expected
Response by ANN Class

44 0.6453 0.3547 1 0 0 1
45 0.6798 0.3202 1 0 0 1
46 0.7219 0.2781 1 0 0 1
47 0.7648 0.2352 1 0 0 1
48 0.8057 0.1943 1 0 0 1
49 0.8390 0.1610 1 0 0 1
50 0.3689 0.6311 0 1 0 1
51 0.6724 0.3276 1 0 0 1
52 0.7452 0.2548 1 0 0 1
53 0.7294 0.2706 1 0 0 1
54 0.7032 0.2968 1 0 0 1
55 0.7150 0.2850 1 0 0 1
56 0.7558 0.2442 1 0 0 1
57 0.8136 0.1864 1 0 0 1
58 0.8661 0.1339 1 0 0 1
59 0.9059 0.0941 1 0 0 1
60 0.9335 0.0665 1 0 0 1
61 0.9519 0.0481 1 0 0 1
62 0.2758 0.7242 0 1 0 1
63 0.5838 0.4162 1 0 0 1
64 0.5138 0.4862 1 0 0 1
65 0.4452 0.5548 0 1 0 1
66 0.3955 0.6045 0 1 0 1
67 0.3688 0.6312 0 1 0 1
68 0.3592 0.6408 0 1 0 1
69 0.3617 0.6383 0 1 0 1
70 0.3770 0.6230 0 1 0 1
71 0.4000 0.6000 0 1 0 1
72 0.4330 0.5670 0 1 0 1
73 0.4738 0.5262 0 1 0 1
74 0.0002 0.9998 0 1 0 1
75 0.3002 0.6998 0 1 0 1
76 0.3416 0.6584 0 1 0 1
77 0.3373 0.6627 0 1 0 1
78 0.3202 0.6798 0 1 0 1
79 0.3020 0.6980 0 1 0 1
80 0.2931 0.7069 0 1 0 1
81 0.2908 0.7092 0 1 0 1
82 0.3092 0.6908 0 1 0 1
83 0.3449 0.6551 0 1 0 1
84 0.3994 0.6006 0 1 0 1
85 0.4699 0.5301 0 1 0 1

4. Conclusions
Artificial Neural Networks are precise models for solving a
wide range of problems, whether physical, chemical, math-
ematical or even philosophical, from simple ones such as
predicting permeates to very complex problems such as voice
detection, autonomous cars and so on.

This paper explored the concepts behind this fascinating
area of computing and used the tool of Artificial Neural Net-
works to solve a relatively simple problem, requiring ANNs
with few neurons in the hidden layer only, but very important
for optimizing and controlling a unit operation that is widely
used in industries, especially in the food industry, which is
extremely necessary in today’s system.

The ANNs created during this work proved that there is a
pattern behind the problem of classifying aqueous suspensions
subjected to crossflow microfiltration, which can be unfolded
through the use of this tool. As a result, six of the ten Artificial
Neural Networks shaped a model that was able to get 100%
of the provided datasets, some with estimation errors of less
than 10−3.

In addition, trainlm proved to be the most suitable training
algorithm for this case, as five of the six ANNs developed
achieved maximum efficiency in terms of the confusion matrix.
With regard to trainscg, the algorithm was efficient in solving
the problem, but only when the amount of data is relatively
large. Finally, the traingd algorithm did not fit well.

Therefore, considering the results presented in this report,
Artificial Neural Networks proved to be a suitable tool for
solving the proposed problem, the identification of aqueous
suspensions during the crossflow microfiltration process with
guar and xanthan gums, because, as well as being low cost
and easy to apply, the ANNs were accurate in their results.
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Chong, T. H., and Wu, B. (2021). Fouling and mitigation
mechanisms during direct microfiltration and ultrafiltration
of primary wastewater. Journal of Water Process Engineer-
ing, 44:102331.
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