Antibacterial activity evaluation of cambuí extract against multi-resistant Enterococcus faecium

https://doi.org/10.55977/etsjournal.v01i01.e024002

Autores

  • Maria Clara Menezes Fontes Center for Study on Colloidal Systems (NUESC)/Institute of Technology and Research (ITP), Aracaju - SE, Brazil
  • Paulo Cardozo Carvalho de Araújo Center for Study on Colloidal Systems (NUESC)/Institute of Technology and Research (ITP)
  • Any Eduarda Nanes de Oliveira Farias Center for Study on Colloidal Systems (NUESC)/Institute of Technology and Research (ITP), Aracaju - SE, Brazil
  • Andriele Mendonça Barbosa Center for Study on Colloidal Systems (NUESC)/Institute of Technology and Research (ITP), Aracaju - SE, Brazil
  • Ana Veruska Cruz da Silva Embrapa Coastal Tablelands, Aracaju-SE, Brazil
  • Klebson Santos Silva Center for Study on Colloidal Systems (NUESC)/Institute of Technology and Research (ITP), Aracaju - SE, Brazil

Palavras-chave:

Bacterial resistance, Enterococcus faecium, Myrciaria tenella O. Berg, Phenolic compounds, Pressurized liquid extraction

Resumo

Bacterial resistance is a global public health issue. Among these pathogens, Enterococcus faecium nosocomial has been highlighted due to its potential to cause bacteremia infections. The incidence of resistant Enterococcus faecium bacteremia has enhanced over time, thereby, it has caused high rates of mortality. Hence, it led to the interest in natural drugs. Plant extracts from the Myrtaceae family have a broad-spectrum antimicrobial action. Among the plants of this family, we can highlight cambuí, due to its wide variety of bioactive compounds such as phenolic compounds. Polyphenols are bioactive molecules that can inhibit the growth of resistant bacteria such as Enterococcus faecium. For this, the present study aimed to obtain bioactive extracts from cambuí using pressurized hot water to grow inhibition of multi-resistant Enterococcus faecium nosocomial. In the present study, antibacterial compounds were obtained after extraction kinetics over 120 minutes at a temperature of 50º C, a flow rate of 1 mL/min-1, and a constant pressure of 200 bar using water as the extraction solvent. Flavonoids and other phenolic compounds from cambuí extracts were quantified by spectrophotometric methods. The TSA using the well-diffusion method was used to verify the sensitivity of the bacterium Enterococcus faecium against cambuí aqueous extract. The results showed that the best extraction time was 60 minutes using 60 mL of water. The cambuí aqueous extract showed a relevant amount of flavonoids and other phenolic compounds, hence, this extract was able to inhibit the growth of the bacterium Enterococcus faecium resistant to Ampicillin, Imipenem, Vancomycin, and Teicoplanin.

Referências

[Azmir et al., 2013] Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., Jahurul, M. H. A., Ghafoor, K., Norulaini, N. A. N., and Omar, A. K. M. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering. DOI: https://doi.org/10.1016/j.jfoodeng.2013.01.014

[Borges et al., 2014] Borges, L. L., Conceição, E. C., and Silveira, D. (2014). Active compounds and medicinal properties of myrciaria genus. Food Chemistry, 153:224-233. DOI: https://doi.org/10.1016/j.foodchem.2013.12.064

[Cruz Silva et al., 2020] Cruz Silva, A. V., Sirqueira Nascimento, A. L., and Muniz, E. N. (2020). Fruiting and quality attributes of cambui (myrciaria floribunda (west ex willd.) o. berg in the atlantic forest of northeast brazil. REVISTA AGRO@MBIENTE ON-LINE, 14. DOI: https://doi.org/10.18227/1982-8470ragro.v14i0.5861

[da Silva et al., 2016] da Silva, R. P. F. F., Rocha-Santos, T. A. P., and Duarte, A. C. (2016). Supercritical fluid extraction of bioactive compounds. TrAC - Trends in Analytical Chemistry. DOI: https://doi.org/10.1016/j.trac.2015.11.013

[De Melo et al., 2016] De Melo, M. M. R., Martins, P. F., Silvestre, A. J. D., Sarmento, P., and Silva, C. M. (2016). Measurement and modeling of supercritical fluid extraction curves of eichhornia crassipes for enhanced stigmasterol production: Mechanistic insights of the process. Separation and Purification Technology. DOI: https://doi.org/10.1016/j.seppur.2016.02.038

[de Paulo Farias et al., 2020] de Paulo Farias, D., Neri-Numa, I. A., de Araújo, F. F., and Pastore, G. M. (2020). A critical review of some fruit trees from the myrtaceae family as promising sources for food applications with functional claims. Food Chemistry, 306:125630. DOI: https://doi.org/10.1016/j.foodchem.2019.125630

[Efenberger-Szmechtyk et al., 2021] Efenberger-Szmechtyk, M., Nowak, A., and Czyzowska, A. (2021). Plant extracts rich in polyphenols: antibacterial agents and natural preservatives for meat and meat products. Critical Reviews in Food Science and Nutrition, 61(1):149-178. DOI: https://doi.org/10.1080/10408398.2020.1722060

[Flórez et al., 2015] Flórez, N., Conde, E., and Domínguez, H. (2015). Microwave assisted water extraction of plant compounds. Journal of Chemical Technology and Biotechnology, 90(4):590-607. DOI: https://doi.org/10.1002/jctb.4519

[Hall et al., 2018] Hall, R. M., Mayer, D. A., Mazzutti, S., and Ferreira, S. R. S. (2018). Simulating large scale sfe applied to recover bioactive compounds from papaya seeds. Journal of Supercritical Fluids. DOI: https://doi.org/10.1016/j.supflu.2018.07.013

[Mališová et al., 2021] Mališová, L., Jakubů, V., Pomorská, K., Musílek, M., and Žemličková, H. (2021). Spread of linezolid-resistant enterococcus spp. in human clinical isolates in the czech republic. Antibiotics, 10(2):1-8. DOI: https://doi.org/10.3390/antibiotics10020219

[Patel et al., 2016] Patel, S. M., Nagulapalli Venkata, K. C., Bhattacharyya, P., Sethi, G., and Bishayee, A. (2016). Potential of neem (azadirachta indica 1.) for prevention and treatment of oncologic diseases. Seminars in Cancer Biology. DOI: https://doi.org/10.1016/j.semcancer.2016.03.002

[Perioto et al., 2022] Perioto, C. Z., Brandã, C. T. d. A., Moreira, J. d. M., Prado, A. A. O. S., Neta, M. T. S. L., and Narain, N. (2022). Potencial antioxidante e caracterização físico-química e microbiológica do kombucha / antioxidant potential and physicochemical and microbiological characterization of kombucha. Brazilian Journal of Development, 8(1):739-751. DOI: https://doi.org/10.34117/bjdv8n1-049

[Plaza and Turner, 2015] Plaza, M. and Turner, C. (2015). Pressurized hot water extraction of bioactives. TrAC - Trends in Analytical Chemistry, 71:39-54. DOI: https://doi.org/10.1016/j.trac.2015.02.022

[Ríos and Recio, 2005] Ríos, J. L. and Recio, M. C. (2005). Medicinal plants and antimicrobial activity. Journal of Ethnopharmacology. DOI: https://doi.org/10.1016/j.jep.2005.04.025

[Santos et al., 2018] Santos, K., Barbosa, A., Freitas, V., Muniz, A., Mendonça, M., Calhelha, R., Ferreira, I., Franceschi, E., Padilha, F., Oliveira, M., and Dariva, C. (2018). Antiproliferative activity of neem leaf extracts obtained by a sequential pressurized liquid extraction. Pharmaceuticals, 11(9):76. DOI: https://doi.org/10.3390/ph11030076

[Seraglio et al., 2018] Seraglio, S. K. T., Schulz, M., Nehring, P., Della Betta, F., Valese, A. C., Daguer, H., Gonzaga, L. V., Fett, R., and Costa, A. C. O. (2018). Nutritional and bioactive potential of myrtaceae fruits during ripening. Food Chemistry, 239:649-656. DOI: https://doi.org/10.1016/j.foodchem.2017.06.118

[Silva Santos et al., 2016] Silva Santos, K., Barbosa, A., Pereira da Costa, L., Pinheiro, M., Oliveira, M., and Ferreira Padilha, F. (2016). Silver nanocomposite biosynthesis: Antibacterial activity against multidrug-resistant strains of pseudomonas aeruginosa and acinetobacter baumannii. Molecules, 21(9):1255. DOI: https://doi.org/10.3390/molecules21091255

[Sovová, 2005] Sovová, H. (2005). Mathematical model for supercritical fluid extraction of natural products and extraction curve evaluation. Journal of Supercritical Fluids, 33(1):35-52. DOI: https://doi.org/10.1016/j.supflu.2004.03.005

[Takshak and Agrawal, 2019] Takshak, S. and Agrawal, S. B. (2019). Defense potential of secondary metabolites in medicinal plants under uv-b stress. Journal of Photochemistry and Photobiology B: Biology. DOI: https://doi.org/10.1016/j.jphotobiol.2019.02.002

[Trentini et al., 2017] Trentini, C. P., da Silva, S. B., Rodrigues, G. M., dos Santos Garcia, V. A., Cardozo-Filho, L., and da Silva, C. (2017). Pressurized liquid extraction of macauba pulp oil. Canadian Journal of Chemical Engineering, 95(8):1579-1584. DOI: https://doi.org/10.1002/cjce.22789

[Zhang et al., 2020] Zhang, L., Liu, Z., Sun, Y., Wang, X., and Li, L. (2020). Combined antioxidant and sensory effects of active chitosan/zein film containing -tocopherol on agaricus bisporus. Food Packaging and Shelf Life, 24. DOI: https://doi.org/10.1016/j.fpsl.2020.100470

[Álvarez Martínez et al., 2018] Álvarez Martínez, F. J., BarrajónCatalán, E., Encinar, J. A., Rodríguez-Díaz, J. C., and Micol, V. (2018). Antimicrobial capacity of plant polyphenols against gram-positive bacteria: A comprehensive review. Current Medicinal Chemistry, 27(15):2576-2606. DOI: https://doi.org/10.2174/0929867325666181008115650

Publicado

2024-02-02

Como Citar

Menezes Fontes, M. C., Cardozo Carvalho de Araújo, P., Nanes de Oliveira Farias, A. E. ., Mendonça Barbosa, A. ., Cruz da Silva, A. V., & Santos Silva, K. (2024). Antibacterial activity evaluation of cambuí extract against multi-resistant Enterococcus faecium. Engineering & Technology Scientific Journal, 1(1). https://doi.org/10.55977/etsjournal.v01i01.e024002

Edição

Seção

Artigos Científico

Artigos mais lidos pelo mesmo(s) autor(es)