Pó de vidro de garrafas não retornáveis: aditivo pozolânico em matriz cimentícia
Palavras-chave:
Resíduo de vidro, Aditivo, Argamassa, PozolanaResumo
Solid waste from disposable long neck bottles was used as pozzolanic additive to the cement matrix. Mortar specimens containing finely ground glass (90-53 µm) until 15 wt% were evaluated for physical and mechanical properties. The mechanical test showed an increase of 97% (greater than the values found in the literature) in the axial compression strength of the samples containing glass due to the increased pozzolanic activity index caused by glass addition to mortar. The mechanical strength was relatively greater when the glass particle size was reduced (53-38µm). The pozzolanic activity was observed at advanced ages either, by Brazilian standardized tests or thermal reactions between water and calcium hydroxides. Scanning electron microscopy reinforced the hydrated-calcium silicates present after calcium hydroxide consumption, characteristic of pozzolanic materials. From a technical and environmental viewpoint, the use of glass waste from long neck bottles as pozzolanic additive to the cement matrix proved to be feasible.
Referências
ABIVIDRO. Vidro o resíduo infinitamente reciclável. Associação Brasileira das Indústrias de Vidro 2019.
Associação Nacional dos Catadores e Catadoras de Materiais Recicláveis. Anuário da Reciclagem 2020. Brasilia - DF: 2020.
Moreira, T. S.; Costa, K. M.; Almeida, R. C.. Análise do desempenho mecânico de concretos e argamassas mediante a substituição parcial da massa do agregado miúdo (areia) por vidro moído oriundo de garrafas de cerveja long neck. RCT - Rev Ciência e Tecnol 2020;6. doi:10.18227/rct.v6i0.5942. DOI: https://doi.org/10.18227/rct.v6i0.5942
Jacobi P. R.; Besen, G. R.. Gestão de resíduos sólidos em São Paulo: desafios da sustentabilidade. Estudos Avançados 2011;25:135–58. doi:10.1590/S0103-40142011000100010. DOI: https://doi.org/10.1590/S0103-40142011000100010
Nagalli, A.; Carvalho, K. Q.. Model for estimating construction waste generation in masonry building. Proc Inst Civ Eng-Waste Resour Manag 2019;172:28–36. doi:10.1680/jwarm.18.00016. DOI: https://doi.org/10.1680/jwarm.18.00016
Cassar, J.; Camilleri, J.. Utilisation of imploded glass in structural concrete. Constr Build Mater 2012;29:299–307. doi:10.1016/j.conbuildmat.2011.10.005. DOI: https://doi.org/10.1016/j.conbuildmat.2011.10.005
Maier, P. L., Durham S. A.. Beneficial use of recycled materials in concrete mixtures. Constr Build Mater 2012;29:428–37. doi:10.1016/j.conbuildmat.2011.10.024. DOI: https://doi.org/10.1016/j.conbuildmat.2011.10.024
Ulsen, C.; Kahn, H.; Hawlitschek, G.; Masini, E. A.; Angulo, S. C.; John, V. M.. Production of recycled sand from construction and demolition waste. Constr Build Mater 2013;40:1168–73. doi:10.1016/j.conbuildmat.2012.02.004. DOI: https://doi.org/10.1016/j.conbuildmat.2012.02.004
Aljerf, L.. Effect of Thermal-cured Hydraulic Cement Admixtures on the Mechanical Properties of Concrete. Interceram - Int Ceram Rev 2015;64:346–56. doi:10.1007/BF03401142. DOI: https://doi.org/10.1007/BF03401142
Dunuweera, S. P.; Rajapakse, R. M. G.. Cement Types, Composition, Uses and Advantages of Nanocement, Environmental Impact on Cement Production, and Possible Solutions. Adv Mater Sci Eng 2018;2018:1–11. doi:10.1155/2018/4158682. DOI: https://doi.org/10.1155/2018/4158682
Pfeil, W.. Concreto Armado, Volume 1. Rio de Janeiro, RJ.: Livros Tecnicos e Cientificos Editora Ltda; 1985.
Felix, E. F.; Possan, E.. Balance emissions and CO2 uptake in concrete structures: simulation based on the cement content and type. Revista IBRACON Estruturas e Materiais 2018;11:135–62. doi:10.1590/s1983-41952018000100008. DOI: https://doi.org/10.1590/s1983-41952018000100008
ABCP - Associação Brasileira de Cimento Portland. Guia básico de utilização do cimento portland. São Paulo: Associação Brasileira de Cimento Portland, 2002.
Long, G. R.. Microstructure and chemistry of unhydrated cements. Philos Trans R Soc London Ser A, Math Phys Sci 1983;310:43–51. doi:10.1098/rsta.1983.0064. DOI: https://doi.org/10.1098/rsta.1983.0064
Gartner E. M.; Young, J. F.; Damidot, D. A.. “Hydration of Portland cement,” in: Bensted, Barnes, J. P.. Structure and performance of cements. London: Spon Press; 2002.
Mehta, P. K. and Monteiro, P. J.. Concrete: microstructure properties, and materials. 4th ed. New York, NY - United States: Editora McGraw-Hill Education; 2013.
Brough, A. R; Dobson, C. M.; Richardson, I. G; Groves, G. W.. Application of Selective 29Si Isotopic Enrichment to Studies of the Structure of Calcium Silicate Hydrate (C-S-H) Gels. J Am Ceram Soc 1994;77:593–6. doi:10.1111/j.1151-2916.1994.tb07034.x. DOI: https://doi.org/10.1111/j.1151-2916.1994.tb07034.x
Agarwal, S. K.. Pozzolanic activity of various siliceous materials. Cem Concr Res 2006;36:1735–9. doi:10.1016/j.cemconres.2004.06.025. DOI: https://doi.org/10.1016/j.cemconres.2004.06.025
Liao, W; Sun, X.; Kumar, A.; Sun, H.; Ma, H.. Hydration of Binary Portland Cement Blends Containing Silica Fume: A Decoupling Method to Estimate Degrees of Hydration and Pozzolanic Reaction. Front Mater 2019;6. doi:10.3389/fmats.2019.00078. DOI: https://doi.org/10.3389/fmats.2019.00078
Martínez-Ramírez S, Frías M, Nakanishi EY, Savastano H. Pozzolanic Reaction of a Biomass Waste as Mineral Addition to Cement Based Materials: Studies by Nuclear Magnetic Resonance (NMR). Int J Concr Struct Mater 2019;13:31. doi:10.1186/s40069-019-0342-3. DOI: https://doi.org/10.1186/s40069-019-0342-3
Sakir, S.; Raman, S. N.; Safiuddin, M.; Kaish, A. B. M. A.; Mutalib, A. A.. Utilization of By-Products and Wastes as Supplementary Cementitious Materials in Structural Mortar for Sustainable Construction. Sustainability 2020;12:3888. doi:10.3390/su12093888. DOI: https://doi.org/10.3390/su12093888
Massazza, F.. Pozzolanic cements. Cem Concr Compos 1993;15:185–214. doi:10.1016/0958-9465(93)90023-3. DOI: https://doi.org/10.1016/0958-9465(93)90023-3
Kattar, J.E.; Almeida, N. J.. Cimento Portland. 4th ed. São Paulo: Editora Holdercim do Brasil S.A; 1999.
Jiang, Y.; Ling, T.-C.; Mo, K. H.; Shi, C.. A critical review of waste glass powder – Multiple roles of utilization in cement-based materials and construction products. J Environ Manage 2019;242:440–9. doi:10.1016/j.jenvman.2019.04.098. DOI: https://doi.org/10.1016/j.jenvman.2019.04.098
Shi, C.; Wu, Y.; Riefler, C.; Wang, H.. Characteristics and pozzolanic reactivity of glass powders. Cem Concr Res 2005;35:987–93. doi:10.1016/j.cemconres.2004.05.015. DOI: https://doi.org/10.1016/j.cemconres.2004.05.015
Schwarz, N.; Cam, H.; Neithalath, N.. Influence of a fine glass powder on the durability characteristics of concrete and its comparison to fly ash. Cem Concr Compos 2008;30:486–96. doi:10.1016/j.cemconcomp.2008.02.001. DOI: https://doi.org/10.1016/j.cemconcomp.2008.02.001
Parghi, A.; Shahria, A. M.. Physical and mechanical properties of cementitious composites containing recycled glass powder (RGP) and styrene butadiene rubber (SBR). Constr Build Mater 2016;104:34–43. doi:10.1016/j.conbuildmat.2015.12.006. DOI: https://doi.org/10.1016/j.conbuildmat.2015.12.006
Liu, G.; Florea, M. V. A.; Brouwers, H. J. H.. Performance evaluation of sustainable high strength mortars incorporating high volume waste glass as binder. Constr Build Mater 2019;202:574–88. doi:10.1016/j.conbuildmat.2018.12.110. DOI: https://doi.org/10.1016/j.conbuildmat.2018.12.110
Patel, D.; Tiwari, R. P.; Shrivastava, R.; Yadav, R. K.. Effective utilization of waste glass powder as the substitution of cement in making paste and mortar. Constr Build Mater 2019;199:406–15. doi:10.1016/j.conbuildmat.2018.12.017. DOI: https://doi.org/10.1016/j.conbuildmat.2018.12.017
Shoaei, P.; Ameri, F.; Reza, M. H.; Ghasemi, T.; Cheah, C. B.. Glass powder as a partial precursor in Portland cement and alkali-activated slag mortar: A comprehensive comparative study. Constr Build Mater 2020;251:118991. doi:10.1016/j.conbuildmat.2020.118991. DOI: https://doi.org/10.1016/j.conbuildmat.2020.118991
ABNT. ABNT-NBR16697: Cimento Portland: Requisitos. Rio de Janeiro, RJ.: 2018.
ASTM International. ASTM C150 / C150M-17: Standard Speciication for Portland Cement. Conshohocken, PA, USA: 2017.
ABNT. ABNT-NBR12653: Materiais pozolânicos-Requisitos. Rio de Janeiro, RJ.: 2014.
ABNT. ABNT-NBR5752: Materiais pozolânicos – Determinação do índice de desempenho com cimento Portland aos 28 dias. Rio de Janeiro, RJ.: 2014.
ABNT. ABNT-NBR7215: Cimento Portland - Determinação da resistência à compressão de corpos de prova cilíndricos. Rio de Janeiro, RJ.: 2019.
Tashima, M. M.; Soriano, L.; Payá, J.; Monzó, J.; Borrachero, M. V.. Assessment of pozzolanic/hydraulic reactivity of vitreous calcium aluminosilicate (VCAS). Mater Des 2016;96:424–30. doi:10.1016/j.matdes.2016.02.036. DOI: https://doi.org/10.1016/j.matdes.2016.02.036
Deschner, F.; Winnefeld, F.; Lothenbach, B.; Seufert, S.; Schwesig, P.; Dittrich, S.. Hydration of Portland cement with high replacement by siliceous fly ash. Cem Concr Res 2012;42:1389–400. doi:10.1016/j.cemconres.2012.06.009. DOI: https://doi.org/10.1016/j.cemconres.2012.06.009
ABNT. ABNT-NBR7222: Concreto e argamassa — Determinação da resistência à tração por compressão diametral de corpos de prova cilíndricos. Rio de Janeiro, RJ.: 2011.
ABNT. ABNT-NBR9778: Argamassa e concreto endurecidos – Determinação da absorção de água, índice de vazios e massa específica. Rio de Janeiro, RJ.: 2009.
Galvão, A. C. P.; Farias, A. C. M.; Mendes, J. U. L.. Characterization of waste of soda-lime glass generated from lapping process to reuse as filler in composite materials as thermal insulation. Cerâmica 2015;61:367–73. doi:10.1590/0366-69132015613591987. DOI: https://doi.org/10.1590/0366-69132015613591987
Szymon, D; Paulina, C; Marcin, G.; Krzywon R.. Impact of recycled ground glass addition on strength properties of tungsten mine waste geopolymeric binder. ICEUBI 2017, Covilha, Portugal: 2017.
Pereira-de-Oliveira, L. A.; Castro-Gomes, J. P.; Santos, P. M. S. The potential pozzolanic activity of glass and red-clay ceramic waste as cement mortars components. Constr Build Mater 2012;31:197–203. doi:10.1016/j.conbuildmat.2011.12.110. DOI: https://doi.org/10.1016/j.conbuildmat.2011.12.110
Bueno, E. T.; Paris, J. M.; Clavier, K. A.; Spreadbury, C.; Ferraro, C. C.; Townsend, T. G.. A review of ground waste glass as a supplementary cementitious material: A focus on alkali-silica reaction. J Clean Prod 2020;257:120180. doi:10.1016/j.jclepro.2020.120180. DOI: https://doi.org/10.1016/j.jclepro.2020.120180
Taylor, H. F. W.. Cement chemistry. 2nd ed. London: Editora Thomas Telford. Services Ltda.; 1997.
Khmiri, A.; Samet, B.; Chaabouni, M. A.. cross mixture design to optimise the formulation of a ground waste glass blended cement. Constr Build Mater 2012;28:680–6. doi:10.1016/j.conbuildmat.2011.10.032. DOI: https://doi.org/10.1016/j.conbuildmat.2011.10.032
Mali, A. K.; Nanthagopalan, P.. Comminution: A Supplementation for Pozzolanic Adaptation of Sugarcane Bagasse Ash. J Mater Civ Eng 2021;33. doi:10.1061/(ASCE)MT.1943-5533.0003985. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0003985
Phillip, E.; Khoo, K. S.; Yusof, M. A. W.; Abdel R. R. O.. Assessment of POFA -Cementitious material as backfill barrier in DSRS borehole disposal: 226Ra confinement. J Environ Manage 2021;280:111703. doi:10.1016/j.jenvman.2020.111703. DOI: https://doi.org/10.1016/j.jenvman.2020.111703
Cyr, M.; Lawrence, P.; Ringot, E.. Efficiency of mineral admixtures in mortars: Quantification of the physical and chemical effects of fine admixtures in relation with compressive strength. Cem Concr Res 2006;36:264–77. doi:10.1016/j.cemconres.2005.07.001. DOI: https://doi.org/10.1016/j.cemconres.2005.07.001
Girão, A. V.; Richardson, I. G.; Porteneuve, C. B.; Brydson, R. M. D.. Composition, morphology and nanostructure of C–S–H in white Portland cement pastes hydrated at 55 °C. Cem Concr Res 2007;37:1571–82. doi:10.1016/j.cemconres.2007.09.001. DOI: https://doi.org/10.1016/j.cemconres.2007.09.001
Liu, S.; Shen, Y.; Wang, Y.; He, H.; Luo, S.; Huang, C.. Synergistic use of sodium bicarbonate and aluminum sulfate to enhance the hydration and hardening properties of Portland cement paste. Constr Build Mater 2021;299:124248. doi:10.1016/j.conbuildmat.2021.124248. DOI: https://doi.org/10.1016/j.conbuildmat.2021.124248
Wang, Y.; Shi, C.; Lei, L.; Ma, Y.; Liu, J.; Hu, X.. Formulation of an alkali-free accelerator and its effects on hydration and mechanical properties of Portland cement. Cem Concr Compos 2022;129:104485. doi:10.1016/j.cemconcomp.2022.104485. DOI: https://doi.org/10.1016/j.cemconcomp.2022.104485
Braunegg, G.; Bona, R.; Koller, M.. Sustainable Polymer Production. Polym Plast Technol Eng 2004;43:1779–93. doi:10.1081/PPT-200040130. DOI: https://doi.org/10.1081/PPT-200040130
Cordeiro, G. C.; Toledo Filho, R. D.; Tavares, L. M.; Fairbairn, E. M. R.; Hempel, S.. Influence of particle size and specific surface area on the pozzolanic activity of residual rice husk ash. Cem Concr Compos 2011;33:529–34. doi:10.1016/j.cemconcomp.2011.02.005. DOI: https://doi.org/10.1016/j.cemconcomp.2011.02.005
Tashima, M. M.; Fioriti, C. F.; Akasaki, J. L.; Bernabeu, J. P.; Sousa, L. C.; Melges, J. L. P.. Cinza de casca de arroz (CCA) altamente reativa: método de produção e atividade pozolânica. Ambient Construído 2012;12:151–63. doi:10.1590/S1678-86212012000200010. DOI: https://doi.org/10.1590/S1678-86212012000200010
Soriano, L.; Monzó, J.; Bonilla, M.; Tashima, M. M.; Payá, J.; Borrachero, M. V.. Effect of pozzolans on the hydration process of Portland cement cured at low temperatures. Cem Concr Compos 2013;42:41–8. doi:10.1016/j.cemconcomp.2013.05.007. DOI: https://doi.org/10.1016/j.cemconcomp.2013.05.007
Moraes, J. C. B.; Akasaki, J. L.; Melges, J. L. P.; Monzó, J.; Borrachero, M. V.; Soriano, L.. Assessment of sugar cane straw ash (SCSA) as pozzolanic material in blended Portland cement: Microstructural characterization of pastes and mechanical strength of mortars. Constr Build Mater 2015;94:670–7. doi:10.1016/j.conbuildmat.2015.07.108. DOI: https://doi.org/10.1016/j.conbuildmat.2015.07.108
Silva, J.; Brito, J. V. R.. Incorporation of fine ceramics in mortars. Constr Build Mater 2009;23:556–64. doi:10.1016/j.conbuildmat.2007.10.014. DOI: https://doi.org/10.1016/j.conbuildmat.2007.10.014
Braga, M.; Brito, J.; Veiga, R.. Incorporation of fine concrete aggregates in mortars. Constr Build Mater 2012;36:960–8. doi:10.1016/j.conbuildmat.2012.06.031. DOI: https://doi.org/10.1016/j.conbuildmat.2012.06.031
Peres, J. G. M.; Tavares, R. D.; Luca, S. Q. J.; Barbosa, P. I.. Estudo da Viabilidade da Adição de Resíduos de Vidro Moído na Produção de Argamassa Cimentícia. Eng Ambient - Espírito St Do Pinhal 2013;10:03–26.
Publicado
Como Citar
Edição
Seção
Copyright (c) 2022 Bruno Rodrigues de Brito, Ana Beatriz Bacurau Martins, Renata da Silva magalhães, Luis Fernando dos Santos, Gleyson Tadeu de Almeida Santos, José Augusto Junior, Silvio Rainho Teixeira, Agda Eunice de Souza
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Engineering & Technology Scientific Journal é licenciada sob Creative Commons Attribution-NonCommercial 4.0 International License.
Isenção de responsabilidade: os artigos publicados pela Engineering & Technology Scientific Journal foram pré-visualizados e autenticados pelos autores antes da publicação. A Revista, o Editor e o Conselho Editorial não têm o direito ou responsabilidade de justificar ou ser responsáveis por dados imprecisos e enganosos, se houver. É da exclusiva responsabilidade do Autor em questão. Leia nossa Política de Plágio e o uso deste site significa que você concorda com os Termos de Uso.