Whirl-flutter control through direct piezoelectric effect
Keywords:
Whirl-flutter, Controle passivo, Efeito piezoelétrico direto, Unimorph harvester, Bimorph harvesterAbstract
The aeroelastic instability known as whirl-flutter must be considered during the design of a propeller-driven aircraft. Usually, aircraft with single or multiple rotors may suffer with such phenomenon, especially when large rotor diameter is applied, such as vertical take-off and landing aircrafts (VTOL) with or without tilt rotors. Depending on the cruise speed, the whirl-flutter influences the project of rotors, wings and pylons. With the advent of modern air mobility, a better understanding of such phenomenon, as well as the development of vibrational control techniques to increase the stability margins becomes important. Although smart materials, such as piezoceramics, are commonly applied to control aeroelastic phenomena, the application to whirl-flutter control remains uninvestigated. Thus, the present research proposes passive control technique based on the direct piezoelectric effect, in a unimorph and bimorph harvester configurations, observing its effect on the aeroelastic system’s behavior. As main result of the piezoelectric material presence, an increased the flutter speed is observed, improving the system’s stability. Additionally, the bimorph configuration is more efficient to postpone the critical speed.
References
(1) Abdelkefi, A. (2012). Global nonlinear analysis of piezoelectric energy harvesting from ambient and aeroelastic vibrations. [PhD diss., Virginia Polytechnic Institute and State University]. https://ui.adsabs.harvard.edu/abs/2012PhDT.......289A
(2) Abdelkefi, A. (2016). Aeroelastic energy harvesting: A review. International Journal of Engineering Science, (100), 112–135. http://dx.doi.org/10.1016/j.ijengsci.2015.10.006
(3) Abdelkefi, A., & Ghommem, M. (2013). Piezoelectric energy harvesting from morphing wing motions for micro air vehicles. Theoretical and Applied Mechanics Letters, 3(5), 052004. http://dx.doi.org/10.1063/2.1305204
(4) Abdelkefi, A., Hajj, M. R., & Nayfeh, A. (2012). Piezoelectric energy harvesting from transverse galloping of bluff bodies. Smart Materials and Structures, (22), 015014. http://dx.doi.org/10.1088/0964-1726/22/1/015014
(5) Abdelkefi, A., Nayfeh, A., & Hajj, M. R. (2011). Modeling and analysis of piezoaeroelastic energy harvesters. Nonlinear Dynamics, (67), 925–939. http://dx.doi.org/10.1007/s11071-011-0035-1
(6) Adeyemi, D. A., Cleaver, D. J., & Du Bois, J. L. (2019). Whirl flutter modelling for active control. [Conference Paper]. The 4th Annual UK Vertical Lift Network Technical Workshop, Cheshire. 2019. https://www.bath.ac.uk/publications/control-and-actuation-research-projects/attachments/active-control-of-whirl-flutter.pdf
(7) Akhras, G. (2000). Smart materials and smart systems for the future. Canadian Military Journal, 1(3), 25–31. http://www.journal.forces.gc.ca/vo1/no3/doc/25-32-eng.pdf
(8) Anicezio, M. M. (2015). Atenuação de vibrações em pás de helic´opteros utilizando circuito piezelétrico semi-passivo. [Master’s thesis, University of Sao Paulo] https://doi.org/10.11606/D.18.2016.tde-30052016-162637
(9) Bastos, S. T. S. H., & Vasconcellos, R. M. G. (2021). Amplitude reduction through energy harvesting in vortex-induced vibrations. [Conference Paper]. International Conference on Advances in Energy Harvesting Technology. Virtual. 2021. https://repositorio.unesp.br/handle/11449/235718
(10) Bastos, S. T. S. H., & Vasconcellos, R. M. G. (2022a). Análise do comportamento aeroelástico da instabilidade de whirl-flutter em rotores de aeronaves. [Conference Paper]. XXVIII congresso nacional de estudantes de engenharia mecanica (creem 2022), Santa Maria. 2022. doi://10.26678/ABCM.CREEM2022.CRE2022-0022
(11) Bastos, S. T. S. H., & Vasconcellos, R. M. G. (2022b). Efeitos da aplicação de piezocerâmicas no comportamento aeroelástico de rotores submetidos ao whirl-flutter. [Conference Paper]. WPGEE - Workshop do Programa em Engenharia Elátrica ICTS/SJBV, São João da Boa Vista. 2022. https://repositorio.unesp.br/hdl.handle.net/11449/214041
(12) Bastos, S. T. S. H., Vasconcellos, R. M. G., & Marques, F. D. (2019a). Vibrações induzidas por vórtice em um cilindro com um grau de liberdade e rigidez não linear. [Conference Paper]. Congresso ibero-americano de engenharia mecânica - cibim, Cartagena. 2019. https://repositorio.unesp.br/handle/11449/235719
(13) Bastos, S. T. S. H., Vasconcellos, R. M. G., & Marques, F. D. (2019b). Vortex induced vibration in a single degree of freedom cylinder with structural nonlinearities. [Conference Paper]. 25th ABCM international congress of mechanical engineering cobem, Uberlandia. 2019. http://dx.doi.org/10.26678/ABCM.COBEM2019.COB2019-0769
(14) Bielawa, R. L. (2005). Rotary wing structural dynamics and aeroelasticity. AIAA education series. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/4.862373
(15) Čečrdle, J. (2015). Theoretical background of whirl flutter phenomenon. In Čečrdle, J. (Ed.). Whirl flutter of turboprop aircraft structures. (pp. 13–31). Woodhead Publishing. http://dx.doi.org/10.1533/9781782421863.13
(16) D’Assunção, D. (2013). Circuito piezelétrico chaveado para controle de vibrações e coleta de energia em uma seção típica aeroelástica. [Master’s thesis, University of Sao Paulo]. https://doi.org/10.11606/D.18.2013.tde-18092013-144556
(17) De Marqui Jr, C., Erturk, A., & Inman, D. (2009). Piezoaeroelastically coupled modeling and analysis of electrical power generation and shunt damping for a cantilever plate. [Conference Paper]. 17th International Conference on Composite Materials, Edinburgh, 2019. http://iccm-central.org/Proceedings/ICCM17proceedings/papers/B5.7%20De%20Marqui.pdf
(18) Erturk, A., & Inman, D. J. (2008). A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. Journal of Vibration and Acoustics, 130(4), 041002. http://dx.doi.org/10.1115/1.2890402
(19) Erturk, A., & Inman, D. J. (2009). An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Materials and Structures, 18(2), 025009. http://dx.doi.org/10.1088/0964-1726/18/2/025009
(20) Karami, M. A., & Inman, D. (2012). Linear and nonlinear energy harvesters for powering pacemakers from heart beat vibrations. Applied Physics Letters, (100). http://dx.doi.org/10.1117/12.880168
(21) Kruger, W. R. (2016). Multibody analysis of whirl flutter stability on a tiltrotor wind tunnel model. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 230(2), 121– 133. http://dx.doi.org/10.1177/1464419315582128
(22) Latif, R., Khan, M., Javed, A., Shah, S., & Rizvi, S. (2021). A semi-analytical approach for flutter analysis of a high-aspect-ratio wing. The Aeronautical Journal, 125(1284), 410–429. http://dx.doi.org/10.1017/aer.2020.71
(23) Liu Xu, V. (2020). Propeller-wing whirl flutter: an analytical approach. Mestrado em engenharia aeronáutica. [Master’s thesis, Delft University of Technology]. . http://resolver.tudelft.nl/uuid:ac4b57c8-724f-43ce-871c-0bfc326874bb
(24) Mair, C., Rezgui, D., & Titurus, B. (2019). Stability analysis of whirl flutter in a nonlinear gimballed rotor-nacelle system. https://vtol.org/store/product/forum-75-proceedings-cdphiladelphia-pennsylvania-may-2019-14366.cfm
(25) Mair, C., Rezgui, D., & Titurus, B. (2018). Nonlinear stability analysis of whirl flutter in a rotor-nacelle system. Nonlinear Dynamics, (94), 2013-2032. http://dx.doi.org/10.1007/s11071-018-4472-y
(26) Mair, C., Titurus, B., & Rezgui, D. (2021). Stability analysis of whirl flutter in rotor-nacelle systems with freeplay nonlinearity. Nonlinear Dynamics, (104), 1–25. http://dx.doi.org/10.1007/s11071-021-06271-z
(27) Mueller, J., Gourinat, Y., Ferrer, R., K. T., & Kerdreux, B. (2004). A numerical study on active control for tiltrotor whirl flutter stability augmentation. [Conference Paper]. American Helicopter Society 4th Decennial Specialist’s Conference on Aeromechanics, San Francisco, 2004. https://doi.org/10.4050/1.3092885
(28) Muralt, P. (2000). Ferroelectric thin films for micro-sensors and actuators: A review. Journal of Micromechanics and Microengineering, (10), 136-146. http://dx.doi.org/10.1088/0960-1317/10/2/307
(29) Naseer, R., Dai, H., Abdelkefi, A., & Wang, L. (2017). Piezomagnetoelastic energy harvesting from vortex-induced vibrations using monostable characteristics. Applied Energy, (203), 142–153. http://dx.doi.org/10.1016/j.apenergy.2017.06.018
(30) Piatak, D., Kvaternik, R., Nixon, M., Langston, C., Singleton, J.D., Bennett, R., & Brown, R. (2003). A wind-tunnel parametric investigation of tiltrotor whirl-flutter stability boundaries. [Conference Paper]. American Helicopter Society 57th Annual Forum, Washington, 2003. https://ntrs.nasa.gov/api/citations/20010057781/downloads/20010057781.pdf?attachment=true
(31) Quintana, A., Vasconcellos, R., Throneberry, G., & Abdelkefi, A. (2021). Nonlinear analysis and bifurcation characteristics of whirl flutter in unmanned aerial systems. Drones, 5(4). http://dx.doi.org/10.3390/drones5040122
(32) Reed III, W. H. (1966). Propeller-rotor whirl flutter: A state-of-theart review. Journal of Sound and Vibration, (4), 526–544. https://doi.org/10.1016/0022-460X(66)90142-8
(33) Ribner, H. S. (1945a). Formulas for propellers in yaw and charts of the side – force derivatives. Technical report, NASA Langley Technical Report Server. https://ntrs.nasa.gov/citations/19930091896
(34) Ribner, H. S. (1945b). Propellers in yaw. Technical report, NASA Langley Technical Report Server. https://ntrs.nasa.gov/citations/19930091897.
(35) Roundy, S., & Wright, P. (2004). A piezoelectric vibration based generator for wireless electronics. Smart Materials and Structures, (13), 1131. http://dx.doi.org/10.1088/0964-1726/13/5/018
(36) Silva, T. M. P. (2014). Circuitos piezelétricos passivos, semipassivos, ativos e híbridos e suas aplicações para problemas aeroelásticos. [Master’s thesis, University of Sao Paulo]. https://doi.org/ 10.11606/D.18.2017.tde-16112017-112104
(37) Taylor, E. S., & Browne, K. A. (1938). Vibration isolation of aircraft power plants. Journal of the Aeronautical Sciences, 6(2), 43–49. http://dx.doi.org/10.2514/8.760
(38) Vasconcellos, R., & Abdelkefi, A. (2015). Nonlinear dynamical analysis of an aeroelastic system with multi-segmented moment in the pitch degree-of-freedom. Communications in Nonlinear Science and Numerical Simulation, (20), 324-334. http://dx.doi.org/10.1016/j.cnsns.2014.05.017
Published
How to Cite
Issue
Section
Copyright (c) 2023 Sérvio Túlio Suenai Haramura Bastos, Rui Marcos Grombone de Vasconcellos
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Engineering & Technology Scientific Journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Disclaimer: Articles published by Engineering & Technology Scientific Journal have been pre-viewed and authenticated by the Authors before publication. The Journal, Editor and the editorial board are not entitled or liable to either justify or responsible for inaccurate and misleading data if any. It is the sole responsibility of the Author concerned. Read our Plagiarism Policy and use of this site signifies your agreement to the Terms of Use.