Forest-Sulcroalcoholic Waste Solid Fuel

https://doi.org/10.55977/etsjournal.v01i01.e023005

Authors

  • Gabrielli Viana Magalhães Faculdade de Engenharia e Ciências (FEC), Departamento de Engenharia - Campus de Rosana. Rosana, 19274-000, São Paulo, Brasil.
  • Faculdade de Engenharia e Ciências (FEC), Departamento de Engenharia - Campus de Rosana. Rosana, 19274-000, São Paulo, Brasil.
  • Lucas Brito Ferreira Faculdade de Engenharia e Ciências (FEC), Departamento de Engenharia - Campus de Rosana. Rosana, 19274-000, São Paulo, Brasil.
  • Muriel Ramos de Oliveira Faculdade de Engenharia e Ciências (FEC), Departamento de Engenharia - Campus de Rosana. Rosana, 19274-000, São Paulo, Brasil.
  • Nanci Keiko Matsumoto Faculdade de Engenharia e Ciências (FEC), Departamento de Engenharia - Campus de Rosana. Rosana, 19274-000, São Paulo, Brasil.
  • Carlos Toshiyuki Hiranobe Faculdade de Engenharia e Ciências (FEC), Departamento de Engenharia - Campus de Rosana. Rosana, 19274-000, São Paulo, Brasil.
  • Felipe Gomes Machado Cardoso Faculdade de Engenharia e Ciências (FEC), Departamento de Engenharia - Campus de Rosana. Rosana, 19274-000, São Paulo, Brasil.
  • Andrea Cressoni De Conti Faculdade de Engenharia e Ciências (FEC), Departamento de Engenharia - Campus de Rosana. Rosana, 19274-000, São Paulo, Brasil.

Keywords:

Energy Densification, Briquettes, Pinus sp, Sulcroalcoholic

Abstract

The concern with the world's current energy matrix has led many countries to seek more sustainable ways of producing energy, one of these ways is using biomass from urban and agricultural waste. Through briquetting, there is a way to transform waste, which would not be reused or disposed of properly into briquettes which is a solid and compacted biofuel. In this research, briquettes were made in the laboratory using mixtures of Pinus sp. and sugar cane bagasse. With a total of seven treatments, T1(100% Bagasse), T2(25% Pinus + 75% Bagasse), T3(75% Pinus + 25% Bagasse), T4(100% Pinus), while "T5", "T6" and "T7" were made with a proportion of 50% Pinus and 50% Bagasse, all treatments have a particle size of 10 mesh. The objective of the present project was to analyze the mechanical strength of the mixtures. The briquettes were produced with a manual briquetting machine with a pressure of 15 tons. T5 is the mixture with the fastest burning due to its high volatile content and low fixed carbon content, while T2 has the highest fixed carbon treatment. T1 (pure bagasse) was seen as the briquette with the highest moisture content rate, while half bagasse half pine sp. had the lowest moisture content, although pine-based briquettes grow and resist impact more than bagasse-based ones. However, the PCS rate was higher in T4 (100% Pinus sp.). It was concluded that pine, is a good material to produce briquettes, after all, its characteristics as high PCS and small ash content is important to generate energy.

References

A. da Silva, D., L. da Róz, A., A. F. Pires, A., M. de Carvalho, A., T. Nakashima, G., A. de Pádua, F., & M. Yamaji, F. (2017). The Influence of Moisture on the Mechanical Properties of Briquettes Made Out of Wood Residues (Eucalyptus sp. and Pinus sp.). Revista Virtual de Química, 9(3), 1078–1086. https://doi.org/10.21577/1984-6835.20170065

Chrisostomo, W. (2011). Estudo da compactação de resíduos lignocelulósicos para utilização como combustível sólido. Universidade Federal de São Carlos.

Goldemberg, J., & Lucon, O. (2007). Energias renováveis: um futuro sustentável. http://www.fuelfromthewind.com/pollution_&_stats.htm

Otávio Brito, J., & Ernesto Barrichelo, L. G. (1977). Correlações entre características físicas e químicas da madeira e a produção de carvão vegetal: i. Densidade e teor de lignina da madeira de eucalipto.

Paulo, M., Granado, P., Rossi, G. G., & De Conti, A. C. (2019). Densificação de biomassa: produção de briquetes a partir da poda de grama biomass densification: briquettes production from grass trimming densificación de biomasa: producción de briquete a partir de poda de gramo. Revista Hipótese, 1, 133–145.

Richards, S. R. (1990). Physical testing of fuel briquettes. Fuel Processing Technology, 25(2), 89–100. https://doi.org/10.1016/0378-3820(90)90098-D

Standard, A. S. T. M. (2011). Standard Test Method for Moisture in the Analysis Sample of Coal and Coke.

T. Nakashima, G., C. S. Adhman, I., L. S. Hansted, A., B. Belini, G., R. Waldman, W., & M. Yamaji, F. (2017). Lignocellulosic Materials: Characterization and Production of Briquettes. Revista Virtual de Química, 9(1), 150–162. https://doi.org/10.21577/1984-6835.20170012

Yamaji, F. M., Vendrasco, L., Chrisostomo, W., & Flores, W. D. P. (2013). Análise do comportamento higroscópico de briquetes. Energia na agricultura, 28(1), 11. https://doi.org/10.17224/EnergAgric.2013v28n1p11-15

Published

2023-10-10

How to Cite

Viana Magalhães , G. ., Manfredini Cerqueira , G. ., Brito Ferreira, L. ., Ramos de Oliveira, M. ., Keiko Matsumoto , N. ., Toshiyuki Hiranobe , C. ., Gomes Machado Cardoso , F. ., & Cressoni De Conti, A. (2023). Forest-Sulcroalcoholic Waste Solid Fuel. Engineering & Technology Scientific Journal, 1(1). https://doi.org/10.55977/etsjournal.v01i01.e023005

Issue

Section

Research Article

Most read articles by the same author(s)