Modelo para determinação da temperatura de água em rios
Palavras-chave:
Rio, Temperatura, Influência, Modelo, Método EMDResumo
As variações sazonais e diárias das temperaturas da água determinam a distribuição das espécies aquáticas e a química da água. Alguns autores conseguiram estimar a temperatura da água usando apenas a temperatura do ar. Uma análise de sensibilidade, bem realizada, é capaz de avaliar as variações de temperatura do rio em resposta a mudanças nas condições hidráulicas e meteorológicas. Nesse sentido, a modelagem da qualidade da água envolve a previsão de parâmetros usando técnicas de simulação matemática. Para tanto modelos computacionais de previsão da temperatura da água do rio podem ser utilizados. O método de decomposição modal empírica (EMD) é ideal para analisar conjuntos de dados como os de temperatura, que são oscilatórios. Entre os modelos de temperatura da água do rio, os modelos de regressão linear simples que utilizam como entrada somente a temperatura do ar aplicados para dados semanais e/ou mensais demonstram ter alta eficiência.
Referências
Ahmadi-Nedushan, B., André St-Hilaire, Ouarda, T. B. M. J. O., Bilodeau, L., Robichaud E., Thiémonge N., Bobée, B. (2007). Predicting river water temperatures using stochastic models: case study of the moisie river (québec, canada). Hydrological Processes, 21(1),29 21-34. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/hyp.6353 doi: https://doi.org/ 10.1002/hyp.635332
Bartholow, J. M. (2005). Recent water temperature trends in the lower klamath river, california. North American Journal of Fisheries Management, 25(1), 152–162.
Caissie, D. (2006). The thermal regime of rivers: a review. Freshwater biology, 51(8), 1389-1406.
Caissie, D., Satish, M. G., & El-Jabi, N. (2005). Predicting river water temperature susing the equilibrium temperature concept with application on miramichi river catchments (new brunswick, canada). Hydrological Processes: An International Journal, 19(11), 2137–2159.
Georges, B. (2022). Characterization of the river thermal regime in relation to its environment: a regional approach using in situ sensors in a temperate region (wallonia, belgium).
Graf, R., Zhu, S. & Sivakumar, B. (2019). Forecasting river water temperature time series using a wavelet–neural network hybrid modelling approach. Journal of Hydrology, 578,48 124115.
Gresselin, F., Dardaillon, B., Bordier, C., Parais, F. & Kauffmann, F. (2022). Use of statistical methods to characterize the influence of groundwater on the thermal regime of rivers in normandy, france: comparison between the highly permeable, chalk catchment of the touques river and the low permeability, crystalline rock catchment of the orne river. Geological Society, London, Special Publications, 517(1), SP517–56 2020.
Gu, R. R., & Li, Y. (2002). River temperature sensitivity to hydraulic and meteorological parameters. Journal of Environmental Management, 66(1), 43-56. Retrieved from https://www.sciencedirect.com/science/article/pii/S0301479702905657 doi: https://doi.org/0.1006/jema.2002.0565
Huang, N., et al. (1998). The empirical mode decomposition method and the hilbert spectrum for non-stationary time series. Proc Roy Soc London 45AA, 703–775.
Jackson, F. L., Fryer, R. J., Hannah, D. M., Millar, C. P., & Malcolm, I. A. (2018). A spatio-temporal statistical model of maximum daily river temperatures to inform the management of scotland’s atlantic salmon rivers under climate change. Science of The Total Environment, 612, 1543 - 1558. Retrieved from https://www.sciencedirect.com/science/article/pii/S0048969717323525 doi: https://doi.org/10.1016/j.scitotenv.2017.09.010
Letcher, B. H., Hocking, D. J., O’neil1, K., Whiteley, A. R., Nislow, K. h., & O’donnell, M. J. (2016). A hierarchical model of daily stream temperature using air water temperature synchronization, autocorrelation, and time lags. PeerJ, 4, 1727.
O’Sullivan, A. M., Devito, K. J., Ogilvie, J., Linnansaari, T., Pronk, T., Allard, S., & Curry, R. A. (2020). Effects of topographic resolution and geologic setting on spatial statistical river temperature models. Water Resources Research, 56(12), e2020WR028122. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/ 85 10.1029/2020WR028122 (e2020WR0281222020WR028122) doi: https://doi.org/10.1029/2020WR028122
Pero, E. J. I., Georgieff, S. M., de Lourdes Gultemirian, M., Romero, F., Hankel, G.E., & Domínguez, E. (2020). Ecore gions, climate, topography, physicochemical, or a combination of all: Which criteria are the best to define river types based on abiotic variables and macroinvertebrates in neotropical rivers? Science of The Total Environment, 738,140303. Retrievedfrom https://www.sciencedirect.com/science/article/pii/S0048969720338250 doi: https://doi.org/10.1016/j.scitotenv.2020.140303.
Ríos-Villamizar, E. A., Piedade, M. T., Junk, W. J., & Waichman, A.V. (2017). Surface water quality and deforestation of the purus river basin, brazilian amazon. International Aquatic Research, 9(1), 81–88.
Sang, Y.-F. (2012). Spatial and temporal variability of daily temperature in the yangtze river delta, China. Atmospheric Research, 112, 12-24. Retrieved from https://www.sciencedirect.com/science/article/pii/S0169809512001123 doi: https://doi.org/10510.1016/j.atmosres.2012.04.006
St-Hilaire, A., Ouarda, T. B. M. J., Bargaoui, Z., Daigle, A. & Bilodeau, L. (2012). Daily river water temperature forecast model with a k-nearest neighbour approach. Hydrological Processes, 26(9),1302-1310. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/hyp.8216 doi: https://doi.org/10.1002/hyp.8216
Syvitski, J., Cohen, S., Miara, A., & Best, J. (2019). River temperature and the thermal-dynamic transport of sediment. Global and Planetary Change, 178, 168-183. Retrieved from https://www.sciencedirect.com/science/article/pii/S0921818118306805 doi: https://doi.org/10.1016/j.gloplacha.2019.04.011.
Toffolon, M., & Piccolroaz, S. (2015). A hybrid model for river water temperature as a function of air temperature and discharge. Environmental Research Letters, 10(11), 114011.
Torregroza-Espinosa, A. C., Restrepo, J. C., Escobar, J., Pierini, J., & Newton, A. (2021). Spatial and temporal variability of temperature, salinity and chlorophyll a in the magdalena river mouth, caribbean sea. Journal of South American Earth Sciences, 105, 102978. Retrieved from https://www.sciencedirect.com/science/6article/pii/S0895981120305216 doi: https://doi.org/710.1016/j.jsames.2020.1029788
van Vliet, M. T., Franssen, W. H., Yearsley, J. R., Ludwig, F., Haddeland, I., Lettenmaier, D. P., & Kabat, P. (2013). Global river discharge and water temperature under climate change. Global Environmental Change, 23(2), 450-12 464. Retrieved from https://www.sciencedirect.com/science/article/pii/S0959378012001331 doi: https://doi.org/10.1016/j.gloenvcha.2012.11.002
Wan Mohd Jaafar, W. S., Abdul Maulud, K. N., Muhmad Kamarulzaman, A. M., Raihan, A., Md Sah, S., Ahmad, A., Razzaq Khan, W. (2020). The influence of deforestation on land surface temperaturea case study of perak and kedah, malaysia. Forests, 11(6), 670.
Webb, B. W., & Walling, D. (1993). Temporal variability in the impacto friver regulation on thermal regime and some biological implications. Freshwater Biology, 29, 167-182. Fuel, 90(8), 2738–2745. https://doi.org/10.1016/j.fuel.2011.03.017
Wilby, R., Johnson, M., & Toone, J. (2014). Nocturnal river water temperatures: Spatial and temporal variations. Science of The Total Environment, 482-483, 157-173. Retrieved from https://www.sciencedirect.com/science/383article/pii/S0048969714003131 doi: https://doi.org/38410.1016/j.scitotenv.2014.02.123
Woltemade, C. J., & Hawkins, T. W. (2016). Stream temperature impacts because of changes in air temperature, land cover and stream discharge: Navarro river watershed, california, usa. River Research and Applications, 32(10), 2020 - 2031. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/rra.3043
Zeiler, A., Faltermeier, R., Keck, I. R., Tomé, A. M., Puntonet, C. G., & Lang, E. W. (2010). Empirical mode decomposition an introduction. In The 2010 international joint conference on neural networks (IJCNN) (pp. 1–8).
Publicado
Como Citar
Edição
Seção
Copyright (c) 2023 Carmen Gonçalves de Macedo e Silva
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Engineering & Technology Scientific Journal é licenciada sob Creative Commons Attribution-NonCommercial 4.0 International License.
Isenção de responsabilidade: os artigos publicados pela Engineering & Technology Scientific Journal foram pré-visualizados e autenticados pelos autores antes da publicação. A Revista, o Editor e o Conselho Editorial não têm o direito ou responsabilidade de justificar ou ser responsáveis por dados imprecisos e enganosos, se houver. É da exclusiva responsabilidade do Autor em questão. Leia nossa Política de Plágio e o uso deste site significa que você concorda com os Termos de Uso.