Development and Optimization of Polymethyl Methacrylate Nanoparticle Formulation for Veterinary Delivery of Progesterone and Ivermectin

https://doi.org/10.55977/etsjournal.v01i01.e022002

Authors

  • Osvaldo Valarini Junior Programa de Pós-Graduação em Agroquímica
  • Paulo Cardozo Carvalho de Araújo Instituto Federal Goiano
  • André Luis Gomes Simões Programa de Pós-Graduação em Engenharia Química, Universidade Estadual de Maringá (UEM)
  • Lauro Bücker Neto Departamento de Química, Universidade Estadual de Ponta Grossa (UEPG)
  • Aline Coqueiro Departamento de Química, Universidade Estadual de Ponta Grossa (UEPG)
  • Fernanda Vitória Leimann Programa de Pós-Graduação em Tecnologia, Universidade Tecnológica Federal do Paraná (UTFPR)
  • Odinei Hess Gonçalves Programa de Pós-Graduação em Tecnologia, Universidade Tecnológica Federal do Paraná (UTFPR)
  • Willyan Machado Giufrida Faculdade de Engenharia e Arquitetura (FEITEP)
  • Fabiano Guimarães Silva Instituto Federal Goiano, IF Goiano - Campus Rio Verde, Rio Verde, 75901-970, Goiás, Brasil

Keywords:

PPolymethyl Methacrylate, Ivermectin, Progesterone, Single Emulsion, Nanoparticles, Optimization

Abstract

The main objective of this study was to produce and optimize polymethyl methacrylate (PMMA) nanoparticles via a simple emulsion process followed by evaporation. The compounds used were chloroform, lecithin, progesterone, ivermectin and PMMA in the organic phase and water and polyvinyl acetate (PVA) in the aqueous phase. The NPs/P4 had a diameter of 154.3 ± 0.1 nm and the NPs/IM 184.1 ± 0.1. The optimization of this diameter occurred by a Box-Behnken response surface. The particles formed were characterized by MET, SEM, TGA/DTA and FT-Raman techniques to determine their morphology, thermal resistance and elucidate their conformational structure.

References

I. S. Chen, Y. Kubo, Ivermectin and its target molecules: shared and unique modulation mechanisms of ion channels and receptors by ivermectin, J. Physiol 0 (2017) 1–13. DOI: https://doi.org/10.1113/JP275236

M. Edmonds, E. Johnson, J. Edmonds, Anthelmintic resistance of Ostertagia ostertagi and Cooperia oncophora to macrocyclic lactones in cattle from the western United States, Vet. Parasitol (2010). DOI: https://doi.org/10.1016/j.vetpar.2010.02.036

M. S. Panayotova-Pencheva, Ivermectin-Behandlung von Endoparasiten bei Wildtieren in Menschenobhut: Eine Übersicht 85 (2016) 280–308. DOI: https://doi.org/10.1016/j.zoolgart.2016.04.001

H. Alout, B. D. Foy, Ivermectin: a complimentary weapon against the spread of malaria?, Expert Rev. Anti. In-fect. Ther 15 (2017) 231–240. DOI: https://doi.org/10.1080/14787210.2017.1271713

I. M. Helbling, C. A. Busatto, S. A. Fioramonti, J. I. Pesoa, L. Santiago, D. A. Estenoz, J. A. Luna, Preparation of TPP crosslinked chitosan microparticles by spray drying for the controlled delivery of progesterone intended for estrus synchronization in cattle, Pharm. Res 35 (2018) 66–66. DOI: https://doi.org/10.1007/s11095-018-2363-z

M. C. Wiltbank, A. H. Souza, P. D. Carvalho, A. P. Cunha, J. O. Giordano, P. M. Fricke, G. M. Baez, M. G. Diskin, Physiological and practical effects of progesterone on reproduction in dairy cattle, Animal 8 (2014) 70–81. DOI: https://doi.org/10.1017/S1751731114000585

R. S. Bisinotto, I. J. Lean, W. W. Thatcher, J. E. P. Santos, Meta-analysis of progesterone supplementation during timed artifi-cial insemination programs in dairy cows, J. Dairy Sci 98 (2015) 2472–2487. DOI: https://doi.org/10.3168/jds.2014-8954

C. Varan, H. Wickström, N. Sandler, Y. Aktaş, E. Bilensoy, Inkjet printing of antiviral PCL nanoparticles and anticancer cyclodextrin inclusion complexes on bioadhesive film for cervical administration, Int. J. Pharm 531 (2017) 701–713. DOI: https://doi.org/10.1016/j.ijpharm.2017.04.036

V. Weiss-Angeli, F. S. Poletto, L. R. Zancan, F. Baldasso, A. R. Pohlmann, S. S. Guter- res, Nanocapsules of octyl methoxycinnamate containing quercetin delayed the photodegradation of both components under ultraviolet a radiation, J. Biomed. Nanotech- nol 4 (2008) 80–89.

B. Adinolfi, M. Pellegrino, A. Giannetti, S. Tombelli, C. Trono, G. Sotgiu, G. Varchi, M. Ballestri, T. Posati, S. Carpi, P. Nieri, F. Baldini, Molecular beacon-decorated poly- methylmethacrylate core-shell fluo-rescent nanoparticles for the detection of survivin mRNA in human cancer cells, Biosens. Bioelectron 88 (2017) 15–24. DOI: https://doi.org/10.1016/j.bios.2016.05.102

J. Kim, Y. M. Lee, Y. Kang, W. J. Kim, Tumor-homing, size-tunable clustered nanopar- ticles for anticancer therapeu-tics, ACS Nano 8 (2014) 9358–9367. DOI: https://doi.org/10.1021/nn503349g

M. S. Falzarano, E. Bassi, C. Passarelli, P. Braghetta, A. Ferlini, Biodistribution Studies of Polymeric Nanoparticles for Drug Delivery in Mice, Hum. Gene Ther 25 (2014) 927–928. DOI: https://doi.org/10.1089/hum.2014.073

D. Qi, Z. Cao, U. Ziener, Recent advances in the preparation of hybrid nanoparticles in miniemulsions, Adv. Colloid Interface Sci 211 (2014) 47–62. DOI: https://doi.org/10.1016/j.cis.2014.06.001

J. M. Asua, Miniemulsion polymerization, Prog. Polym. Sci 27 (2002) 1283–1346. DOI: https://doi.org/10.1016/S0079-6700(02)00010-2

B. V. N. Nagavarma, H. K. S. Yadav, A. Ayaz, L. S. Vasudha, H. G. Shivakumar, Different techniques for preparation of polymeric nanoparticles- A review, Asian J. Pharm. Clin. Res 5 (2012) 16–23.

M. Iqbal, N. Zafar, H. Fessi, A. Elaissari, Double emulsion solvent evaporation techniques used for drug encapsulation, Int. J. Pharm 496 (2015) 173–190. DOI: https://doi.org/10.1016/j.ijpharm.2015.10.057

K. Landfester, M. Antonietti (2004).

G. Tresset, C. Marculescu, A. Salonen, M. Ni, C. Iliescu, Fine control over the size of surfactant-polyelectrolyte nanoparticles by hydrodynamic flow focusing, Anal. Chem 85 (2013) 5850–5856. DOI: https://doi.org/10.1021/ac4006155

D. Rousseau, Fat crystals and emulsion stability - A review, Food Res. Int 33 (2000) 3–14. DOI: https://doi.org/10.1016/S0963-9969(00)00017-X

L. Dai, C. Sun, R. Li, L. Mao, F. Liu, Y. Gao, Structural characterization, formation mechanism and stability of curcumin in zein-lecithin composite nanoparticles fabri- cated by antisolvent co-precipitation, Food Chem 237 (2017) 1163–1171. DOI: https://doi.org/10.1016/j.foodchem.2017.05.134

J. Xue, Q. Zhong, Blending lecithin and gelatin improves the formation of thymol nan- odispersions, J. Agric. Food Chem 62 (2014) 2956–2962. DOI: https://doi.org/10.1021/jf405828s

X. Zhao, Q. Meng, J. Liu, Q. Li, Hydrophobic dye/polymer composite colorants syn- thesized by miniemulsion solvent evaporation technique, Dye. Pigment 100 (2014) 41–49. DOI: https://doi.org/10.1016/j.dyepig.2013.07.028

R. A. Silva-Buzanello, A. C. Ferro, E. Bona, L. Cardozo-Filho, P. H. H. D. Araújo, F. V. Leimann, O. H. Gonçalves, Validation of an Ultraviolet-visible (UV-Vis) technique for the quantitative determination of curcumin in poly(l-lactic acid) nanoparticles, Food Chem 172 (2015) 99–104. DOI: https://doi.org/10.1016/j.foodchem.2014.09.016

F. V. Leimann, M. H. Biz, K. C. Kaufmann, W. J. Maia, O. H. Honçalves, L. C. Filho, C. Sayer, P. H. H. D. Araújo, Characterization of progesterone loaded biodegradable blend polymeric nanoparticles, Ciência Rural 45 (2015) 2082–2088. DOI: https://doi.org/10.1590/0103-8478cr20141288

S. Z. X. Xia, Zeng-Zai, Y. Liu, Studies on Preparation Techniques of Ivermectin Lipo- somes, J. Hunan Agric. Univ. Sci (2004).

S. A. El-Gizawy, B. O. Hagan, N. Irwin, P. A. Mccarron, Effect of poly(ethylene gly- col) content and formulation parameters on particulate properties and intraperitoneal delivery of insulin from PLGA nanoparticles prepared using the double-emulsion evaporation procedure, Pharm. Dev. Technol 0 (2017) 0–0.

Y. Ding, J. Zheng, F. Zhang, J. Kan, Synthesis and characterization of retrograded starch nanoparticles through homogeni-zation and miniemulsion cross-linking, Carbohydr. Polym 151 (2016) 656–665. DOI: https://doi.org/10.1016/j.carbpol.2016.06.007

A. Musyanovych, J. Schmitz-Wienke, V. Mailänder, P. Walther, K. Landfester, Prepa- ration of biodegradable polymer nanoparticles by miniemulsion technique and their cell interactions, Macromol. Biosci 8 (2008) 127–139. DOI: https://doi.org/10.1002/mabi.200700241

K. H. Tseng, C. J. Chou, T. C. Liu, D. C. Tien, T. C. Wu, L. Stobinski, Interactive Relationship between Silver Ions and Silver Nanoparticles with PVA Prepared by the Submerged Arc Discharge Method, Adv. Mater. Sci. Eng (2018). DOI: https://doi.org/10.1155/2018/3240959

I. Riva’i, I. O. Wulandari, H. Sulistyarti, A. Sabarudin, Ex-Situ Synthesis of Polyvinyl alcohol(PVA)-coated Fe 3 O 4 Nanoparticles by Coprecipitation-Ultrasonication Method, IOP Conf. Ser. Mater. Sci. Eng 299 (2018) 12065–12065. DOI: https://doi.org/10.1088/1757-899X/299/1/012065

J. Hao, X. Fang, Y. Zhou, J. Wang, F. Guo, F. Li, X. Peng, Development and optimization of solid lipid nanoparticle formulation for ophthalmic delivery of chloramphenicol using a Box-Behnken design, Int. J. Nanomedicine 6 (2011) 683–692. DOI: https://doi.org/10.2147/IJN.S17386

Y. Ding, J. Zheng, X. Xia, T. Ren, J. Kan, Box-Behnken design for the optimization of nanoscale retrograded starch formation by high-power ultrasonication, LWT - Food Sci. Technol 67 (2016) 206–213. DOI: https://doi.org/10.1016/j.lwt.2015.11.022

M. V. Shaikh, M. Kala, M. Nivsarkar, Formulation and optimization of doxorubicin loaded polymeric nanoparticles using Box-Behnken design: ex-vivo stability and in- vitro activity, Eur. J. Pharm. Sci 100 (2017) 262–272. DOI: https://doi.org/10.1016/j.ejps.2017.01.026

Y. A. Haggag, A. M. Faheem, M. M. Tambuwala, M. A. Osman, S. A. El-Gizawy, B. Hagan, N. Irwin, P. A. Mccarron, Effect of poly(ethylene glycol) content and for- mulation parameters on particulate properties and intraperitoneal delivery of insulin from PLGA nanoparticles prepared using the double-emulsion evaporation proce- dure, Pharm. Dev. Technol (2017) 1–12. DOI: https://doi.org/10.1080/10837450.2017.1295066

J. C. Leroux, E. Allemann, E. Doelker, R. Gurny, New approach for the preparation of nanoparticles by an emulsification diffusion method, Eur. J. Pharm. Biopharm 41 (1995) 14–18.

S. S. Kwon, Y. S. Nam, J. S. Lee, B. S. Ku, S. H. Han, J. Y. Lee, I. S. Chang, Preparation and characterization of co-enzyme Q10-loaded PMMA nanoparticles by a new emul- sification process based on microfluidization, Colloids Surfaces A Physicochem. Eng. Asp 210 (2002) 95–104. DOI: https://doi.org/10.1016/S0927-7757(02)00212-1

S.-K. K. Kozaki, S. I. Kobayashi, Y. Goda, H. Okuda, Evaluating the Properties of Poly(lactic-co-glycolic acid) Na-noparticle Formulations Encapsulating a Hydrophobic Drug by Using the Quality by Design Approach, Chem Pharm Bull (Tokyo) 3 (2017) 221–228. DOI: https://doi.org/10.1248/cpb.c16-00415

A. N. Mendes, L. A. Filgueiras, M. R. P. Siqueira, G. M. Barbosa, C. Holandino, D. Moreira, J. C. Pinto, M. Nele, Encapsulation of Piper cabralanum (Piperaceae) nonpolar extract in poly(methyl methacrylate) by miniemulsion and evaluation of increase in the effectiveness of antileukemic activity in K562 cells, Int. J. Nanomedicine 12 (2017) 8363–8373. DOI: https://doi.org/10.2147/IJN.S134756

J. Herrmann, R. Bodmeier, Somatostatin containing biodegradable microspheres pre- pared by a modified solvent evapora-tion method based on W/O/W-multiple emul- sions, Int. J. Pharm 126 (1995) 129–138. DOI: https://doi.org/10.1016/0378-5173(95)04106-0

A. Esfanjani, S. M. Jafari, Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds, Colloids Surfaces B Biointerfaces 146 (2016) 532–543. DOI: https://doi.org/10.1016/j.colsurfb.2016.06.053

X. T. Li, J. H. Li, G. E. Zhang, G. X. Xi, X. D. Lou, Kinetic studies on the thermal dis- sociation of β-cyclodextrin anisaldehyde inclusion complex, Thermochim. Acta 262 (1995) 165–173. DOI: https://doi.org/10.1016/0040-6031(95)02304-K

J. L. Luna-Xavier, E. Bourgeat-Lami, A. Guyot, The role of initiation in the synthesis of silica/poly(methyl methacrylate) nanocomposite latex particles through emulsion polymerization, Colloid Polym. Sci 279 (2001) 947–958. DOI: https://doi.org/10.1007/s003960100520

P. E. Feuser, L. S. Bubniak, C. Bodack, A. Valério, M. C. Silva, E. Ricci-Júnior, C. Sayer, P. H. H. D. Araújo, In Vitro Cytotoxicity of Poly(Methyl Methacrylate) Nanoparti- cles and Nanocapsules Obtained by Miniemulsion Polymerization for Drug Delivery Application, J. Nanosci. Nanotechnol 16 (2016) 7669–7676. DOI: https://doi.org/10.1166/jnn.2016.11610

P. E. Feuser, P. C. Gaspar, A. V. Jacques, A. C. Tedesco, M. C, D. S. Silva, E. Ricci- Júnior, C. Sayer, P. H. H. D. Araújo, Synthesis of ZnPc loaded poly(methyl methacry- late) nanoparticles via miniemulsion polymerization for pho-todynamic therapy in leukemic cells, Mater. Sci. Eng. C 60 (2016) 458–466. DOI: https://doi.org/10.1016/j.msec.2015.11.063

M. Antonietti, K. Landfester, Polyreactions in miniemulsions, Prog. Polym. Sci 27 (2002) 689–757. DOI: https://doi.org/10.1016/S0079-6700(01)00051-X

J. F. Osorio-Tobón, P. I. N. Carvalho, M. A. Rostagno, A. J. Petenate, M. A. A. Meireles, Precipitation of curcuminoids from an ethanolic turmeric extract using a supercritical antisolvent process, J. Supercrit. Fluids 108 (2016) 26–34. DOI: https://doi.org/10.1016/j.supflu.2015.09.012

B. Ormsby, T. Learner, The effects of wet surface cleaning treatments on acrylic emulsion artists’ paints - a review of recent scientific research, Stud. Conserv 54 (2009) 29–41. DOI: https://doi.org/10.1179/sic.2009.54.Supplement-1.29

N. Anton, J. P. Benoit, P. Saulnier, Design and production of nanoparticles formulated from nano-emulsion templates-A review, J. Control. Release 128 (2008) 185–199. DOI: https://doi.org/10.1016/j.jconrel.2008.02.007

T. Sharma, G. S. Kumar, B. H. Chon, J. S. Sangwai, Thermal stability of oil-in-water Pickering emulsion in the presence of nanoparticle, surfactant, and polymer, J. Ind. Eng. Chem 22 (2015) 324–334. DOI: https://doi.org/10.1016/j.jiec.2014.07.026

C. A. Miller, Spontaneous Emulsification Produced by Diffusion - A Review, Colloids and Surfaces 29 (1988) 89–102. DOI: https://doi.org/10.1016/0166-6622(88)80173-2

M. Trotta, F. Debernardi, O. Caputo, Preparation of solid lipid nanoparticles by a sol- vent emulsification-diffusion technique, Int. J. Pharm 257 (2003) 153–160. DOI: https://doi.org/10.1016/S0378-5173(03)00135-2

W. A. Lopes, M. Fascio, Esquema para interpretação de espectros de substâncias orgânicas na região do infravermelho, Quim. Nova 27 (2004) 670–673. DOI: https://doi.org/10.1590/S0100-40422004000400025

Y. Bai, J. Wang, M. Bashari, X. Hu, T. Feng, X. Xu, Z. Jin, Y. Tian, G. Castronuovo, M. Niccoli, J. G. Galvão, V. F. Silva, S. G. Ferreira, F. R. M. França, D. A. Santos, L. S. Freitas, P. B. Alves, A. A. S. Araújo, S. C. H. Cavalcanti, R. S. Nunes, N. Li, L. Xu, D. C. Marinescu, E. Pincu, I. Stanculescu, V. Meltzer, P. Xu, L. X. Song, H. M. Wang, Thermal analysis of β-cyclodextrin/Berberine chloride inclusion compounds, Ther- mochim. Acta 499 (2013) 62–69. DOI: https://doi.org/10.1016/j.tca.2012.04.029

N. Li, L. Xu, Thermal analysis of β-cyclodextrin/Berberine chloride inclusion com- pounds, Thermochim. Acta 499 (2010) 166–170. DOI: https://doi.org/10.1016/j.tca.2009.10.014

O. V. Junior, J. H. Dantas, C. E. Barão, E. F. Zanoelo, L. Cardozo-Filho, F. F. D. Moraes, Formation of inclusion compounds of (+)Catechin with β-Cyclodextrin in different complexation media: spectral, thermal and antioxidant properties, J. Supercrit. Fluids (2016). DOI: https://doi.org/10.1016/j.supflu.2016.06.005

S. R. Valentini, V. C. Fenelon, A. C. Nogueira, F. Sato, A. N. Medina, M. L. Baesso, R. G. Santana, G. Matioli, Insulin complexation with hydroxypropyl-beta-cyclodextrin: Spectroscopic evaluation of molecular inclusion and use of the com-plex in gel for heal- ing of pressure ulcers, Int. J. Pharm 490 (2015) 229–239. DOI: https://doi.org/10.1016/j.ijpharm.2015.05.037

Z. Aigner, O. Berkesi, G. Farkas, P, Szabó-Révész, DSC, X-ray and FTIR studies of a gemfibrozil/dimethyl-β-cyclodextrin inclusion complex produced by co-grinding, J. Pharm. Biomed. Anal 57 (2012) 62–67. DOI: https://doi.org/10.1016/j.jpba.2011.08.034

L. J. Yang, S. X. Ma, S. Y. Zhou, W. Chen, M. W. Yuan, Y. Q. Yin, X. D. Yang, Preparation and characterization of inclusion complexes of naringenin with ??-cyclodextrin or its derivative, Carbohydr. Polym 98 (2013) 861–869. DOI: https://doi.org/10.1016/j.carbpol.2013.07.010

R. Mishra, K. J. Rao, On the formation of poly(ethyleneoxide)-poly(vinylalcohol) blends, Eur. Polym. J 35 (1999) 1883–1894. DOI: https://doi.org/10.1016/S0014-3057(98)00283-3

S. Rajendran, M. Sivakumar, R. Subadevi, Investigations on the effect of various plasti- cizers in PVA-PMMA solid polymer blend electrolytes, Mater. Lett 58 (2004) 641–649. DOI: https://doi.org/10.1016/S0167-577X(03)00585-8

J. W. Gilman, Flammability and thermal stability studies of ž / 1 polymer layered- silicate clay nanocomposites, APLIED CLAY Sci (1999) 31–49. DOI: https://doi.org/10.1016/S0169-1317(99)00019-8

Y. Zhang, S. Zhuang, X. Xu, J. Hu, Transparent and UV-shielding ZnO@PMMA nanocomposite films, Opt. Mater. (Amst) 36 (2013) 169–172. DOI: https://doi.org/10.1016/j.optmat.2013.08.021

Z. Jin, K. P. Pramoda, G. Xu, S. H. Goh, Dynamic Mechanical Behavior of Melt- processed Multi-walled Carbon Nanotube/PMMA Composites, Chem. Phys. Lett 337 (2001) 186–191. DOI: https://doi.org/10.1016/S0009-2614(01)00186-5

R. Nirmala, H. M. Park, R. Navamathavan, H. S. Kang, M. H. El-Newehy, H. Y. Kim, Lecithin blended polyamide-6 high aspect ratio nanofiber scaffolds via electrospinning for human osteoblast cell culture, Mater. Sci. Eng. C 31 (2011) 486–493. DOI: https://doi.org/10.1016/j.msec.2010.11.013

S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, R. Kumar, Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites-A review, Prog. Polym. Sci 38 (2013) 1232–1261. DOI: https://doi.org/10.1016/j.progpolymsci.2013.02.003

S. S. Ray, M. Okamoto, Polymer/layered silicate nanocomposites: A review from preparation to processing, Prog. Polym. Sci 28 (2003) 1539–1641. DOI: https://doi.org/10.1016/j.progpolymsci.2003.08.002

L. A. Rolim, F. C. M. Santos, L. L. Chaves, M. L. C. M. Gonçalves, J. L. Freitas-Neto,

A. L. D. S. D. Nascimento, J. L. Soares-Sobrinho, M. M. D. Albuquerque, M. D. C. A. D. Lima, P. J. Rolim-Neto, Preformulation study of ivermectin raw material, J. Therm. Anal. Calorim 120 (2015) 807–816. DOI: https://doi.org/10.1007/s10973-014-3691-9

G. Bruylants, J. Wouters, C. Michaux, Differential Scanning Calorimetry in Life Sci- ence: Thermodynamics, Stability, Molecular Recognition and Application in Drug Design, Curr. Med. Chem 12 (2005) 2011–2020. DOI: https://doi.org/10.2174/0929867054546564

T. Kashiwagi, A. Inaba, J. E. Brown, K. Hatada, T. Kitayama, E. Masuda, Effects of Weak Linkages on the Thermal and Oxidative Degradation of Poly(Methyl Methacrylates), Macromolecules 19 (1986) 2160–2168. DOI: https://doi.org/10.1021/ma00162a010

Y. H. Hu, C. Y. Chen, C. C. Wang, Viscoelastic properties and thermal degradation kinetics of silica/PMMA nanocomposites, Polym. Degrad. Stab 84 (2004) 545–553. DOI: https://doi.org/10.1016/j.polymdegradstab.2004.02.001

M. Wesołowski, Analysis of drug formulations by thermal decomposition, Ther- mochim. Acta 209 (1992) 223–251. DOI: https://doi.org/10.1016/0040-6031(92)80201-7

S. Kang, S. Hong, C. R. Choe, M. Park, S. Rim, J. Kim, Preparation and characterization of epoxy composites filled with func-tionalized nanosilica particles obtained via sol-gel process, Polymer (Guildf) 42 (2001) 879–887. DOI: https://doi.org/10.1016/S0032-3861(00)00392-X

Published

2022-04-11

How to Cite

Valarini Junior, O. ., Cardozo Carvalho de Araújo, P., Gomes Simões, A. L., Bücker Neto, L. ., Coqueiro , A. ., Vitória Leimann , F. ., Hess Gonçalves , O., Machado Giufrida, W. ., & Guimarães Silva, F. . (2022). Development and Optimization of Polymethyl Methacrylate Nanoparticle Formulation for Veterinary Delivery of Progesterone and Ivermectin. Engineering & Technology Scientific Journal, 1(1), e022002. https://doi.org/10.55977/etsjournal.v01i01.e022002

Issue

Section

Research Article

Most read articles by the same author(s)